• Title/Summary/Keyword: Optimal Tool

Search Result 1,349, Processing Time 0.031 seconds

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

The Optimal Release Time in Cost Model Using PCLS Model

  • Song, Kwang Yoon;Chang, In Hong;Choi, Min Su;Lee, Da Hye
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.206-214
    • /
    • 2016
  • The basic goal of software development is to produce high quality software at low cost. Therefore, when to stop software testing and release the software product is a significant point in the software development. The software cost model is an effective tool used to help software developers control costs and determine the release time. In this paper, we discuss the cost model to apply all 6 models with consideration of time to remove errors, cost of removing each error and risk cost due to software failure. We show the impact of cost coefficients and parameter values on the expected total cost by changing the values and comparing the optimal release times.

A Study on Optimal Design of PV System Installation by Simulation (시뮬레이션에 의한 PV시스템 설치방식의 최적설계에 관한 연구)

  • So, Jeong-Hoon;Yu, Gwon-Jong;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • This paper compares the operation characteristics of PV(Photovoltaic) system by computer simulation with those of real PV system and the operation characteristics of PV system by computer simulation are evaluated and analyzed considering system parameters of specifications, installation and surrounding conditions etc. From the basis of these results, this study will intend to develop an evaluation, analysis tool and construct database for optimal design of PV system.

A Study on the System Loss Minimizing Algorithm by Optimal Re-location of Static Condenser Using System Power Loss Sensitivity (계통손실 감소를 위한 전력용 콘덴서의 適正 再配置에 대한 연구)

  • 이상중;김건중;정태호;김원겸;김용배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.1
    • /
    • pp.21-24
    • /
    • 1995
  • The larger and the more complicated the system size and configuration grow, the more serious the system loss problem becomes. Exessive system loss causes severs system voltage depression, which even may result in system voltage collapse. This paper proposes an effective tool for minimizing the system power loss by optimal re-location of the static condenser based on the system loss sensitivity index .lambda.$_{Q}$. It is possible to determine the optimal location and amount of VAR investment for minimizing the system loss by priority of .lambda.$_{Q}$ index given for each bus. Several computational techniques for avoiding divergency of the load flow solution are proposed. The loss sensitivity index .lambda.$_{Q}$ uses information of normal power flow equations and their Jacobians. Two case studies proved the effectiveness of the algorithm proposed.posed.

  • PDF

Thermal Characteristics Analysis of Pre-Treated Rayon Fibers for Preparing Activated Carbon Fibers (활성탄소섬유 제조시 전처리된 레이온 섬유의 열특성 분석)

  • Choi, Sang Seun;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.61-72
    • /
    • 2014
  • The aim of this study is to define the condition of optimal pre-treatment for preferable activated carbon fibers (ACFs), which are based on rayon fibers. This paper shows the ideal path of ACFs preparation process; implies that rayon fibers are pre-treated by various solvents with different times before the heating process. The pre-treated rayon fibers finally turned into desirable rayon fiber-based ACFs through optimal pre-treatment condition by heating processes. The thermal analysis method of pre-treated rayon fibers by thermo-gravimetry analyser (TGA) is an idealized tool, which analyzes the best thermal condition of pre-treatment process. Surface morphologies of resulting rayon fibers based ACFs were examined by scanning electron microscope(SEM). The results of TGA and SEM analyses show that the optimal pre-treatment condition for preparing ACFs was clearly defined, in terms of thermal stability and surface morphology.

Payload-Swing Suppression of a Container Crane: Comparison Between Command Shaping Control and Optimal Control

  • Do, Huh-Chang;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.2-54
    • /
    • 2001
  • In this paper two control strategies, command shaping control and optimal control, which aim to the reduction of the residual vibrations of the payload in a container crane system are investigated. Both control methods are open loop control. Due to unmodeled dynamics of the plant and disturbances like initial sway and wind, some residual sway always exists at the end of trolley movement. Command inputs are designed to achieve the control objectives including minimal residual vibration and robustness in the presence of unmodeled dynamics. Simulation results of various command inputs are compared in terms of arrival time, residual sway angle, robustness, and maximum sway distance during the traveling. Command shaping method provides a more competent tool than optimal control.

  • PDF

Optimal distribution of metallic energy dissipation devices in multi-story buildings via local search heuristics

  • Zongjing, Li;Ganping, Shu;Zhen, Huang;Jing, Cao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.419-430
    • /
    • 2022
  • The metallic energy dissipation device (EDD) has been widely accepted as a useful tool for passive control of buildings against earthquakes. The distribution of metallic EDDs in a multi-story building may have significant influence on its seismic performance, which can be greatly enhanced if the distribution scheme is properly designed. This paper addresses the optimal distribution problem in the aim of achieving a desired level of performance using the minimum number of metallic EDDs. Five local search heuristic algorithms are proposed to solve the problem. Four base structures are presented as numerical examples to verify the proposed algorithms. It is indicated that the performance of different algorithms may vary when applied in different situations. Based on the results of the numerical verification, the recommended guidelines are finally proposed for choosing the appropriate algorithm in different occasions.

Technology Selection Method for Optimal Energy Storage (기술 특성치 스크리닝을 통한 최적 에너지저장 기술 선정 방법)

  • Seong Jegarl;Ji Hyun Lee;Hyunshil Kim;Jeseok Shin;Jihun Lim
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • The expanding significance of energy storage (ES) technology is increasing the acceptability of power systems by augmenting renewable energy supply. To deploy such ES technologies, we must select the optimal technology that meets the requirements of the system and confirm the technical and economic feasibility of the business model based on it. Herein, we propose a method and tool for selecting the optimal ES technology suitable for meeting the requirements of the system, based on its performance characteristics. The method described in this study can be used to discover and apply various ES technologies and develop business models with excellent economic feasibility.

Development of Web based Watershed and Sewer Management System using Computational Model and GIS (전산모형과 지리정보시스템을 결합한 Web 기반의 유역 및 하수도 관리시스템의 개발)

  • Kim, Joon Hyun;Park, Hyung Choon;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.63-71
    • /
    • 2000
  • A web based watershed and sewer management system was developed for the analysis of stormwater runoff and sewer flow, and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue and Visual Basic in order to construct user-friendly management system. The developed system was applied to Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of runoff and sewer flow was implemented using RUNOFF and TRANSPORT blocks in SWMM. This system was connected to the management system of surface and subsurface environment management system in order to develop an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer line and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles and analytical tool equipped with Web-GIS, it could serve widely as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process (균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용)

  • Lim, Woo-Seung;Choi, Hong-Seok;Nam, Ki-Ju;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.