• Title/Summary/Keyword: Optimal Tool

Search Result 1,349, Processing Time 0.03 seconds

Design of Gear Dimension and Tooth Flank Form for Optimal and Robust Gear Performance (치차성능의 최적성과 강건성을 고려한 치차제원 및 치면수정의 설계)

  • 배인호;정태형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • Tooth errors inevitable in the manufacturing process have large effect on the strength/durability and vibration performances of gear drives. We show that the manufacturing errors affect the overall gear performances, especially vibration performance, and propose a robust optimal design method for gear dimension and its tooth flank form that guarantees reliable performances to the variation of manufacturing errors. This method begins with a search of optimal design candidates by using the previously developed gear optimal design method for the strength/durability and vibration performances. Then, the statistical analysis method is applied to find a robust design solution for the vibration performance which is generally very sensitive to the manufacturing variations.

Optimal Design of Stiffened Laminated Composite Cylindrical Panel with Various Types of Stiffeners (다양한 형태의 보강재로 보강된 원통형패널의 최적설계)

  • Lee Jong-Sun;Won Chong-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.10-15
    • /
    • 2006
  • The optimal design for stiffened laminated composite cylindrical panels under axial compression was studied using linear and nonlinear deformation theories by finite difference energy methods. Various panel structures was made from Carbon/Epoxy USN125 prepreg and considered 3 types stiffeners. Optimal design analyses of panel structure are carried out by the nonlinear search optimizer, ADS. This optimal design results are compared to the FEM result using ANSYS.

A Study on the Optimal Algorithm to Find the Minimum Numbers of Sharing Resources in Semiconductor Production Systems (반도체 생산 시스템에서의 최소 공유 장비를 구하는 최적 알고리즘에 관한 연구)

  • 반장호;고인선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.61-61
    • /
    • 2000
  • Since FMS(Flexible Manufacturing System) such as semiconductor production systems have the characteristic that each device has to be commonly used in several stages, it is difficult to find an optimal solution. In this paper, we proposed the new algorithm which can get the optimal ratio of sharing resources. We will implement the proposed algorithm to semiconductor production systems. We introduce the optimal algorithm, which is modeled and analyzed by ExSpect, a petri net based simulation tool. When there exist conflicts of sharing resources, the scheduling method is adopted, which gives a priority to the most preceded process. The suggested algorithm can be used not only in semiconductor production systems but also in various FMS.

  • PDF

An Experimental Study on the Optimal Number of Cameras used for Vision Control System (비젼 제어시스템에 사용된 카메라의 최적개수에 대한 실험적 연구)

  • 장완식;김경석;김기영;안힘찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.94-103
    • /
    • 2004
  • The vision system model used for this study involves the six parameters that permits a kind of adaptability in that relationship between the camera space location of manipulable visual cues and the vector of robot joint coordinates is estimated in real time. Also this vision control method requires the number of cameras to transform 2-D camera plane from 3-D physical space, and be used irrespective of location of cameras, if visual cues are displayed in the same camera plane. Thus, this study is to investigate the optimal number of cameras used for the developed vision control system according to the change of the number of cameras. This study is processed in the two ways : a) effectiveness of vision system model b) optimal number of cameras. These results show the evidence of the adaptability of the developed vision control method using the optimal number of cameras.

Optimal Tuning of Bi-axial Servomechanisms for High-Precision Motion Control (고정밀 운동제어를 위한 2축 서보메커니즘의 최적튜닝)

  • Sung, Chul-Mo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.44-51
    • /
    • 2008
  • In this paper, the optimal tuning of a cross-coupled controller linked with the feedforward controller is studied to reduce contouring and tracking errors of a bi-axial servomechanisms by using the previously developed integrated tuning method. The CCC system for an arbitrary curve, which is combined with the feedforward controller, is formulated by a state-space based on a series of linear motion trajectories. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including relevant controller parameters of the servo. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed control and tuning system.

Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System (반응표면법을 이용한 MLCC 자동 정렬 시스템의 운영조건 최적화)

  • Kim, Jae-Min;Chung, Won-Ji;Shin, O-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.582-588
    • /
    • 2010
  • This paper presents the Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System. his paper is composed of two parts: (1) Testing performance verification of MLCC alignment system, compared with manual operation; (2) Applying response surface method to figuring out the optimal transfer conditions of MLCC transfer system. Based on the successfully developed MLCC alignment system, the optimal transfer conditions have been explored by using RSM. The simulations using $ADAMS^{(R)}$ has been performed according to the cube model of CCD. By using $MiniTAB^{(R)}$, we have established the model of response surface based on the simulation results. The optimal conditions resulted from the response optimization tool of $MiniTAB^{(R)}$ has been verified by being assigned to the prototype of MLCC alignment system.

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 및 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim P.;Park S.Y.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.993-996
    • /
    • 2005
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, which has many advantages such as good quality, low cost and rapid machining time. but it also has problems like tool break, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is effected by the milling conditions whose evaluated parameters are spindle, feedrate, and width of cut. The experiments are carried out by full factorial design of experiments using and orthogonal array. This paper shows optimal combination and mathematical model for tool life, and the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

  • PDF

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim, Pyo;Park, Sang-Yoon;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.73-80
    • /
    • 2006
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, because it has many advantages such as good quality, low cost and rapid machining time. But it also has problems such as tool breakage, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is affected by the milling conditions whose selected parameters are spindle speed, feedrate, and width of cut. The experiments were carried out by full factorial design of experiments using an orthogonal array. This paper shows optimal combination and mathematical model for tool life, Therefore, the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

A Investigation into Tool State Monitoring by Sensing Changes according to Groove (홈의 형상에 따른 센서 감지거리 변화를 이용한 공구상태 모니터링에 관한 연구)

  • Son, Gil-Ho;Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lew, Kyung-Hee;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.31-39
    • /
    • 2017
  • Research in the machine tool industry has focused on ICT-based smart machines rather than hardware technologies related to machine tools. Real-time tool-status monitoring is representative of this type of technology and has become important for measuring sensors during cutting processes. In this paper, we studied several research areas and used a round bar to conduct fundamental research into the axial displacement of the main spindle of a tool when it was subjected to a machining load. We were able to use the gap sensor to detect the axial displacement indirectly by using grooves with various shapes on the round bar and sensing the gaps between the grooves. We then determined the optimal groove shape for monitoring the tool state.

Study on Upward Machining of Inclined Surface by Ball-End Milling (볼 엔드밀에 의한 경사면 상방향 절삭가공에 관한 연구)

  • Jeong, Jin-Woo;Bae, Eun-Jin;Kim, Sang Hyun;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2021
  • The mold industry is competitive, and mold should be processed under optimal conditions for efficient processing. However, the cutting conditions of the ball-end mill, which are a major factor in mold processing, are mostly set empirically, and considerable research is required for increasing the tool life and processing accuracy. In this study, a tool dynamometer and an eddy current sensor were used along with NI-DAQ, a data acquisition device, to obtain characteristic values of the cutting force and tool deformation during the ball end-mill machining of inclined surfaces at a machining center. The cutting force and tool deformation were measured in an experiment. It was found that the tool received the greatest cutting force at the end of the machining process, and the deformation of the tool increased rapidly. Furthermore, the cutting force tended to increase with the angle and number of rotations. The deformation increased rapidly during the machining of a 45° inclined surface.