• Title/Summary/Keyword: Optimal Size

Search Result 3,014, Processing Time 0.029 seconds

An Implementation of ECC Coprocessor over ${F_2}^{162}$ Based on Optimal Normal Basis (162 비트 Optimal Normal Basis상의 ECC Coprocessor의 구현)

  • 배상태;백동근;김홍국
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.370-372
    • /
    • 2004
  • 본 논문에서는 162bits의 Key Size를 가지고서도 RSA 1024bits의 암호학적 강도를 지니는 스마트카드용으로 적합한 ECC Coprocessor의 구현하고자 한다. ECC의 하드웨어 구현시의 적합성을 위해 162bit Optimal Normal Basis를 선택하였으며, Multiplication은 23 클록 사이클에 수행이 되도록 구현하였으며. Inversion은 Multiplication을 11번 사용하는 알고리즘을 선택하였다. 이때 한번의 점간의 덧셈 연산을 마치는데 331(335) 클록 사이클이 소요되며 클록의 최소주기는 3ns 이다. 또한 Area는 37,111를 기록했다.

  • PDF

An Optimal PWM Strategy for IGBT-based Traction Inverters - (철도용 IGBT인버터를 위한 최적 PWM기법)

  • 황재규;김영민;장기호
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.442-449
    • /
    • 1998
  • Since it is essential for traction motors to reduce size and weight to achieve given traction effort, they need high input voltage. But the lack of input voltage occurs periodically due to the characteristics of train system. Therefore traction inverters use over-modulation PWM to maximize inverter's voltage gain. On the other hand, IGBT inverters can use higher frequency twice than GTO ones, which resulted in the need for novel optimal synchronous PWM strategy. This paper suggests that linearly-compensated overmodulation/optimal synchronous PWM strategy and also the simulation results of the method for a real traction motor-intertia model are presented.

  • PDF

Optimal Allocations in Two-Stage Cluster Sampling

  • Koh, Bong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.749-754
    • /
    • 1999
  • The cost is known to be proportional to the size of sample. We consider a cost function of the form Cost=c1np+c2npmq where c1, c2 p, and q are all positive constants. This cost function is to be used in finding an optimal allocation in two-stage cluster sampling. The optimal allocations of n and m gives the properties of uniqueness under some conditions and of monotonicity with p>0 when q=1.

  • PDF

Design of 60-GHz Back-to-back Differential Patch Antenna on Silicon Substrate

  • Deokgi Kim;Juhyeong Seo;Seungmin Ryu;Sangyoon Lee;JaeHyun Noh;Byeongju Kang;Donghyuk Jung;Sarah Eunkyung Kim;Dongha Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.142-147
    • /
    • 2023
  • This paper presents a novel design of a differential patch antenna for 60-GHz millimeter-wave applications. The design process of the back-to-back (BTB) patch antenna is based on the conventional single-patch antenna. The initial design of the BTB patch antenna (Type-I) has a patch size of 0.66 × 0.98 mm2 and a substrate size of 0.99 × 1.48 mm2. It has a gain of 1.83 dBi and an efficiency of 94.4% with an omni-directional radiation pattern. A 0.4 mm-thick high-resistivity silicon (HRS) is employed for the substrate of the BTB patch antenna. The proposed antenna is further analyzed to investigate the effect of substrate size and resistivity. As the substrate resistivity decreases, the gain and efficiency degrade due to the substrate loss. As the substrate (HRS) size decreases approaching the patch size, the resonant frequency increases with a higher gain and efficiency. The BTB patch antenna has optimal performances when the substrate size matches the patch size on the HRS substrate (Type-II). The antenna is redesigned to have a patch size of 0.81 × 1.18 mm2 on the HRS substrate in the same size. It has an efficiency of 94.9% and a gain of 1.97 dBi at the resonant frequency of 60 GHz with an omni-directional radiation pattern. Compared to the initial design of the BTB patch antenna (Type-I), the optimal BTB patch antenna (Type-II) has a slightly higher efficiency and gain with a considerable reduction in antenna area by 34.8%.

  • PDF

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA Model 후미의 저저항 최적 설계)

  • Hur Nahmkeon;Kim Wook
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

Development of Optimal Accelerated Life Test Plans for Weibull Distribution Under Intermittent Inspection

  • Seo, Sun-Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.1
    • /
    • pp.89-106
    • /
    • 1989
  • For Weibull distributed lifetimes, this paper presents asymptotically optimal accelerated life test plans for practical applications under intermittent inspection and type-I censoring. Computational results show that the asymptotic variance of a low quantile at the design stress as optimal criterion is insensitive to the number of inspections at overstress levels. Sensitivity analyses indicate that optimal plans are robust enough to moderate departures of estimated failure probabilities at the design and high stresses as input parameters to plan accelerated life tests from their true values. Monte Carlo simulation for small sample study on optimal accelerated life test plans developed by the asymptotic maximum likelihood theory is conducted. Simulation results suggest that optimal plans are satisfactory for sample size in practice.

  • PDF

Design optimization of reinforced concrete structures

  • Guerra, Andres;Kiousis, Panos D.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.313-334
    • /
    • 2006
  • A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multistory RC structures incorporates optimal stiffness correlation among all structural members and results in cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material and labor costs for forming and placing concrete and steel are incorporated as a function of member size using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of MATLAB's (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of RC structures. A number of examples are presented that demonstrate the ability of this formulation to achieve optimal designs.

A Study on the Optimal Frequency for Precise Measurement of Fracture Velocity by Ultrasonic Fractography (초음파 Fractography에 의한 파괴속도의 첨밀측정을 위한 최적주파수 선정에 관한 연구)

  • Lee, B.S.;Han, E.K.;Song, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.154-160
    • /
    • 1993
  • A mothod to decide the optimal frequency for the fracture velocity measurement by ultrasonic fractography is presented. A theoretical formula to decide the optimal frequency for ultrasonic fractography testing is made and it is compared with experimental value. According to the formula the optimal frequency is shown to be depending on the attenuation coefficient and size(width) of the specimen. In the case of PMA specimen with ligament 43mm the theoretical value for the optimal frequency is about 260 KHz and it is good agreement with experimental value.

  • PDF