• 제목/요약/키워드: Optimal Size

검색결과 3,008건 처리시간 0.031초

최적 전류파형제어를 통한 브러시리스 DC 발전기의 출력밀도 최대화에 관한 연구 (Power Density Maximization of the Brushless DC Generator by Controlling the Optimal Current Waveform)

  • 이형우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권7호
    • /
    • pp.430-436
    • /
    • 2004
  • This paper presents an advanced control technique for power density maximization of the Brushless DC (BLDC) generator by using the linear tracking method. In a generator of given rating, the weight and size of the system affect the fuel consumption directly. Therefore, power density is one of the most important issues in a stand-alone generator. BLDC generator has high power density in the machine point of view and additional increases of power density by control means can be expected. Conventional rectification methods cannot achieve the maximum power possible because of hon-optimal current waveforms. The optimal current waveform to maximize power density and minimize machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation and experimental work. A new simple algebraic method has been proposed to accomplish the proposed control without an FFT which is time consuming and complicated.

자동차 클러치 페달 암의 무게 최소화를 위한 형상 최적설계 (Shape Optimal Design to Minimize the Weight of the Pedal Arm of an Automotive Clutch)

  • 이부윤;이현우
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.269-276
    • /
    • 2007
  • Optimal thickness and shape of the pedal arm of an automotive clutch is determined, using the numerical optimization technique, by solving the size and shape optimization problems to minimize its weight. For the optimization problems, two cases of stress and displacement constraints are considered: one from the vertical, and the other from the transverse stiffness test condition. The result of the transverse case is shown to be more conservative than that from the vertical case, being determined as the final optimum.

다수 표적을 공격하는 편대항공기의 최적작전시간 결정 모형 (A Model for Determining Optimal Operating Time of Aircrafts Attacking Multiple Targets)

  • 김용복;민계료
    • 한국국방경영분석학회지
    • /
    • 제18권1호
    • /
    • pp.61-73
    • /
    • 1992
  • Up to the present, the operating time has been studied on only a single aircraft attacking a single target or multiple targets under enemy threats. This study is to determine optimal operating time and appropriate size of aircrafts attacking multiple targets. Measures of mission effectiveness is defined through derivation of the probability of the various events associated with operating. By using these measures, the expected benefit of operating and the expected cost of operating are generated as a function of time. To formulate operating time determination model, the expected gain of operating is defined as the difference between the expected benefit of operating and the expected cost of operating. The model can be used to determine optimal operating time which maximizes the expected gain of operating, and can be used as the basis for determining the appropriate size of aircrafts.

  • PDF

인공지능 응용을 위한 하이브리드 메모리 설계 탐색 기법 (An Design Exploration Technique of a Hybrid Memory for Artificial Intelligence Applications)

  • 조두산
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.531-536
    • /
    • 2021
  • As artificial intelligence technology advances, it is being applied to various application fields. Artificial intelligence is performing well in the field of image recognition and classification. Chip design specialized in this field is also actively being studied. Artificial intelligence-specific chips are designed to provide optimal performance for the applications. At the design task, memory component optimization is becoming an important issue. In this study, the optimal algorithm for the memory size exploration is presented, and the optimal memory size is becoming as a important factor in providing a proper design that meets the requirements of performance, cost, and power consumption.

신경망과 유한요소법을 이용한 단조품의 초기 소재 형상 결정 (Determination of Initial Billet Size using The Artificial Neural Networks and The Finite Element Method for a Forged Product)

  • 김동진;고대철;김병민;최재찬
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.214-221
    • /
    • 1995
  • In the paper, we have proposed a new method to determine the initial billet for the forged products using a function approximation in the neural network. The architecture of neural network is a three-layer neural network and the back propagation algorithm is employed to train the network. By utilizing the ability of function approximation of a neural network, an optimal billet is determined by applying the nonlinear mathematical relationship between the aspect ratios in the initial billet and the final products. The amount of incomplete filling in the die is measured by the rigid-plastic finite element method. The neural network is trained with the initial billet aspect ratios and those of the unfilled volumes. After learning, the system is able to predict the filling regions which are exactly the same or slightly different to the results of finite element simulation. This new method is applied to find the optimal billet size for the plane strain rib-web product in cold forging. This would reduce the number of finite element simulation for determining the optimal billet size of forging product, further it is usefully adapted to physical modeling for the forging design.

  • PDF

태양전지용 단결정 실리콘 잉곳 생산성 증대를 위한 초크랄스키 공정 최적 설계 (Optimal Design of Cz Process for Increasing a Productivity of Single Crystal Si Solar Cell Ingot)

  • 이은국;정재학
    • Korean Chemical Engineering Research
    • /
    • 제49권4호
    • /
    • pp.432-437
    • /
    • 2011
  • 최근 산업에서는 Czochralski(Cz) 공정에서 ingot의 생산성을 높이고 동시에 에너지 소비를 적절하게 할 수 있는 최적 설계가 요구되고 있다. 본 연구에서는 컴퓨터 시뮬레이션을 이용하여 현장에서 적용 가능한 설계 인자인 도가니(crucible) 크기, shield 모양, heater의 위치를 변동하면서 가장 최적의 생산성 및 전력 절감 설계를 찾아내는 연구를 수행하였다. 대상 공정은 직경 8 인치 태양전지용 ingot 생산 공정으로 생산성 증대를 위해 도가니 크기를 22인치에서 24인치로 바꾸어 안정적 생산이 가능한 최적설계를 찾았다. 이때 산업에서 외형변화가 허용되지 않아 단열두께만 줄여 최적설계를 찾았다.

Continuous size optimization of large-scale dome structures with dynamic constraints

  • Dede, Tayfun;Grzywinski, Maksym;Selejdak, Jacek
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.397-405
    • /
    • 2020
  • In this study size optimization of large-scale dome structures with dynamic constraints is presented. In the optimal design of these structure, the Jaya algorithm is used to find minimal size of design variables. The design variables are the cross-sectional areas of the steel truss bar elements. To take into account the constraints which are the first five natural frequencies of the structures, the finite element analysis is coded in Matlab programs using eigen values of the stiffness matrix of the dome structures. The Jaya algorithm and the finite elements codes are combined by the help of the Matlab - GUI (Graphical User Interface) programming to carry out the optimization process for the dome structures. To show the efficiency and the advances of the Jaya algorithm, 1180 bar dome structure and the 1410 bar dome structure were tested by taking into the frequency constraints. The optimal results obtained by the proposed algorithm are compared with those given in the literature to demonstrate the performance of the Jaya algorithm. At the end of the study, it is concluded that the proposed algorithm can be effectively used in the optimal design of large-scale dome structures.

층별 응답률을 사용한 멱배정 방법의 확장 (Expansion of power allocation using response rate per stratum)

  • 박현아
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.671-683
    • /
    • 2021
  • 멱배정의 전체 효율은 최적배정보다 감소하지만, 층별 표본을 골고루 배정하는 기법이며 조사 현장에서는 제곱근 비례배정으로 많이 사용된다. 그리고 실제조사에서는 무응답을 고려하여 이론적 공식에서 나오는 것보다 더 많은 표본크기를 추출한다. 본 연구에서는 층별 표본크기를 결정함에 있어서 멱배정 방법에 층별 응답률의 정보를 추가하여 배정하는 기법을 연구한다. 제안된 배정기법들을 비례,최적,제곱근 비례 배정과 비교하며 응답률이 추가된 비례, 최적배정과도 비교하는 것을 모의실험을 통해 살펴봄으로써 배정방법들의 장단점을 살펴본다.

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF