• 제목/요약/키워드: Optimal Satellite Images

검색결과 65건 처리시간 0.026초

2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석 (Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery)

  • 정민경;김용일
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.179-197
    • /
    • 2020
  • 지형 정규화 기법은 영상 촬영 시의 광원, 센서 및 지표면 특성에 따라 발생하는 밝기값 상의 지형적인 영향을 제거하는 방법으로, 지형 조건으로 인해 동일 피복의 픽셀들이 서로 다른 밝기값을 지닐 때 그 차이를 감소시킴으로써 평면 상의 밝기값과 같아 보이도록 보정한다. 이러한 지형적인 영향은 일반적으로 산악 지형에서 크게 나타나며, 이에 따라 산불 피해 지역 추정과 같은 산악 지형에 대한 영상 활용에서는 지형 정규화 기법이 필수적으로 고려되어야 한다. 그러나 대부분의 선행연구에서는 중저해상도의 위성영상에 대한 지형 보정 성능 및 분류 정확도 영향 분석을 수행함으로써, 고해상도 다시기 영상을 이용한 지형 정규화 기법 분석은 충분히 다루어지지 않았다. 이에 본 연구에서는 PlanetScope 영상을 이용하여 신속하고 정확한 국내 산불 피해 지역 탐지를 위한 각 밴드별 최적의 지형 정규화 기법 평가 및 선별을 수행하였다. PlanetScope 영상은 3 m 공간 해상도의 전세계 일일 위성영상을 제공한다는 점에서 신속한 영상 수급 및 영상 처리가 요구되는 재난 피해 평가 분야에 높은 활용 가능성을 지닌다. 지형 정규화 기법 비교를 위해 보편적으로 이용되고 있는 7가지 기법을 구현하였으며, 토지 피복 구성이 상이한 산불 전후 영상에 모두 적용, 분석함으로써 종합적인 피해 평가에 활용될 수 있는 밴드 별 최적 기법 조합을 제안하였다. 제안된 방법을 통해 계산된 식생 지수를 이용하여 화재 피해 지역 변화 탐지를 수행하였으며, 객체 기반 및 픽셀 기반 방법 모두에서 향상된 탐지 정확도를 나타내었다. 또한, 화재 피해 심각도(burn severity) 매핑을 통해 지형 정규화 기법이 연속적인 밝기값 분포에 미치는 효과를 확인하였다.

L-곡선 기반의 Modified Wiener Filter(MWF)를 이용한 위성 영상의 MTF 보상 (A MTF Compensation for Satellite Image Using L-curve-based Modified Wiener Filter)

  • 전병일;김홍래;장영근
    • 대한원격탐사학회지
    • /
    • 제28권5호
    • /
    • pp.561-571
    • /
    • 2012
  • 변조전달함수(MTF; Modulation Transfer Function)는 광학영상의 성능을 평가하는 중요한 품질 요소 중 하나이다. 영상의 MTF 증진을 위해 영상 복원이 필요하나, 이 과정은 대표적인 부적합문제(ill-posed problem)의 하나로 특정한 해를 갖지 않는다. 영상 복원을 위한 필터에는 역 필터(IF; Inverse Filter), 의사 역 필터(PIF; Pseudo Inverse Filter), Wiener Filter(WF) 등이 있다. 이들 중 가장 일반적으로 사용되고 있는 WF는 촬영된 영상 내에서 영상과 잡음을 정확히 구분하기 어렵다는 한계를 가지고 있다. 본 논문에서는 Modified Wiener Filter(MWF)를 사용하여 부적절 문제를 풀 수 있도록 문제를 정규화 하였으며, 정규화 변수(regularization parameter)의 값을 찾기 위한 방법으로 L-곡선(L-curve)을 사용하였다. MWF의 검증을 위해 Dubaisat-1 위성의 영상을 의사 역 필터(PIF), Wiener Filter(WF), MWF로 영상 복원을 수행하였다. 복원 결과, MWF를 사용했을 때가 PIF를 사용했을 때의 결과에 비해 20.93%, WF를 사용했을 때의 결과에 비해 10.85% 더 향상된 MTF를 얻을 수 있었다.

고해상도 다중분광영상 제작을 위한 합성방법의 비교 (Comparison of Image Merging Methods for Producing High-Spatial Resolution Multispectral Images)

  • 김윤형;이규성
    • 대한원격탐사학회지
    • /
    • 제16권1호
    • /
    • pp.87-98
    • /
    • 2000
  • 상업위성에서 공급되는 고해상도영상의 활용을 증대하기 위한 영상합성에 대한 관심이 증가하고 있다. 합성에 사용된 고해상도 흑백영상과 저해상도 다중분광영상은 항공기탑재 다중분광 주사기에 의해 촬영된 네 밴드의 영상을 이용하여 모의 제작하였다. 모의 합성된 2rl 해상도의 흑백 영상과 Bnl 해상도의 네 밴드 영상에 대하여 다섯 가지 합성방법(MWD, ItIS, PCA, HPF, CN, PCA) 을 적용하였다. 합성된 영상에 대해서 원래 영상들이 가지고 있던 공간해상도와 분광정보 측면의 특성을 분석하고자, 육안판독, 통계치비교, semivariogram, 분광반사특성 등을 비교하였다. MWD 변환방법에 의하여 합성된 영상이 공간해상도 및 분광정보 측면에서 모두 합성에 사용된 원래 영상과 근접한 결과를 보였다.

천리안위성 2A호 위성영상을 위한 영상융합기법의 비교평가 (A Comparison of Pan-sharpening Algorithms for GK-2A Satellite Imagery)

  • 이수봉;최재완
    • 한국측량학회지
    • /
    • 제40권4호
    • /
    • pp.275-292
    • /
    • 2022
  • 기후변화 감시에 위성 자료 활용을 위해 GCOS (Global Climate Observing System)는 시공간 해상도, 시간 변화에 따른 안정성, 불확실도 등의 요구사항을 제시하고 있다. 천리안위성 2A호의 경우, 센서의 한계로 인해 산출물들이 공간해상도 조건에 충족하지 못하는 경우가 많다. 따라서 본 연구에서는 영상융합 기법들을 천리안위성 2A호 영상에 적용하여 산출물 생성 시 활용될 수 있는 최적의 기법을 찾고자 한다. 이를 위해 CS (Component Substitution), MRA (Multiresolution Analysis), VO (Variational Optimization), DL (Deep Learning)에 포함되는 총 6가지 영상융합 기법을 활용하였다. DL의 경우 합성적(Synthesis) 특성 기반 방법을 훈련자료 구축에 사용하였다. 합성적 특성 기반 방법의 과정은 PAN (Panchromatic)과 MS (Multispectral) 영상의 공간해상도 차이만큼 두 영상의 해상도를 낮춰 융합 영상을 생성한 후 원본 MS 영상과 비교한다. 합성적 특성 기반 방법은 공간해상도를 저하시킨 PAN 영상과 MS 영상 간 기하 특성이 같아야 사용자가 원하는 수준의 융합 영상을 제작할 수 있다. 하지만, 훈련자료 구축 시 비유사성이 존재하기에 이를 최소화하는 방법으로 무작위 비율을 활용한 PSGAN 모델(PSGAN_RD)을 추가로 활용하였다. 융합 영상의 검증은 일관성(consistency) 및 합성적 특성 기반 정성적, 정량적 분석을 수행하였다. 분석 결과, 영상융합 알고리즘 중 GSA가 공간 유사도를 나타내는 평가지수에서 가장 높은 수치를 보였으며, 분광 유사도를 나타내는 지수들은 PSGAN_RD 모델의 정확도가 가장 높았다. 융합 영상의 공간 및 분광 특성을 모두 고려한다면 PSGAN_RD 모델이 천리안위성 2A호 산출물 제작에 가장 최적일 것으로 판단하였다.

Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State

  • Kim, Nari;Lee, Yang-Won
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.383-390
    • /
    • 2016
  • Remote sensing data has been widely used in the estimation of crop yields by employing statistical methods such as regression model. Machine learning, which is an efficient empirical method for classification and prediction, is another approach to crop yield estimation. This paper described the corn yield estimation in Iowa State using four machine learning approaches such as SVM (Support Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees) and DL (Deep Learning). Also, comparisons of the validation statistics among them were presented. To examine the seasonal sensitivities of the corn yields, three period groups were set up: (1) MJJAS (May to September), (2) JA (July and August) and (3) OC (optimal combination of month). In overall, the DL method showed the highest accuracies in terms of the correlation coefficient for the three period groups. The accuracies were relatively favorable in the OC group, which indicates the optimal combination of month can be significant in statistical modeling of crop yields. The differences between our predictions and USDA (United States Department of Agriculture) statistics were about 6-8 %, which shows the machine learning approaches can be a viable option for crop yield modeling. In particular, the DL showed more stable results by overcoming the overfitting problem of generic machine learning methods.

음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지 (Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm)

  • 김형규;임중빈;김경민;원명수;김태정
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.637-654
    • /
    • 2023
  • 최근 지구관측 위성이 급격히 발전함에 따라 사용자의 수가 증가하고 있다. 이에 따라 지구관측위성위원회(Committee on Earth Observation Satellites, CEOS)에서는 분석준비자료(Analysis Ready Data, ARD)라는 개념을 제안하고 분석준비자료의 요구 조건을 CEOS ARD for Land (CARD4L)로 정의하여 사용자 친화적인 위성영상을 제공하기 위해 노력하고 있다. 분석준비자료에는 육상분석에 불필요한 픽셀이 식별된 마스크(Unusable Data Mask, UDM)가 영상과 함께 제공되어야 한다. UDM의 종류는 구름, 구름 그림자, 지형그림자 등이 있다. 지형그림자는 지형기복이 큰 산악지형에서 발생되며 지형그림자가 생긴 지역은 복사조도가 낮기 때문에 분석 결과에 오류를 야기시킨다. 기존 지형그림자 탐지연구는 지형그림자 보정을 위해 지형그림자 픽셀을 탐지하는데 목적을 두었지만, 이것은 지형보정 기법으로 대체 가능하다. 따라서 지형그림자 탐지 목적을 확장할 필요가 있다. 산림과 농업분석을 목적으로 한 차세대중형위성 4호(CAS500-4)의 활용을 위해 본 연구에서는 지형그림자 탐지 범위를 태양의 영향을 적게 받는 지역까지 확장하였다. 본 논문은 남북한을 대상으로 지형그림자 마스크 생성을 위해 지형그림자 탐지 가능성을 분석하는데 목적이 있다. 지형그림자 탐지를 위해서 태양의 위치, 지표면의 경사와 경사방향을 이용한 음영기복 알고리즘을 사용하였다. 한반도를 촬영한 5 m급 공간해상도의 RapidEye 영상과 10 m급 공간해상도의 Sentinel-2 영상들을 대상으로 참값과 비교하며 최적의 음영기복 임계값을 결정하였다. 결정된 임계값을 사용하여 지형 그림자 탐지를 수행하고 결과를 분석하였다. 정성적 결과로는 전체적으로 참값과의 형상이 유사함을 확인하였다. 정량적 실험결과는 F1 score가 대부분 0.8에서 0.94 사이인 것을 확인하였다. 본 연구 결과를 바탕으로 남북한을 대상으로 자동적인 지형그림자 탐지가 잘 수행됨을 확인하였다.

A Rule-based Urban Image Classification System for Time Series Landsat Data

  • Lee, Jin-A;Lee, Sung-Soon;Chi, Kwang-Hoon
    • 대한원격탐사학회지
    • /
    • 제27권6호
    • /
    • pp.637-651
    • /
    • 2011
  • This study presents a rule-based urban image classification method for time series analysis of changes in the vicinity of Asan-si and Cheonan-si in Chungcheongnam-do, using Landsat satellite images (1991-2006). The area has been highly developed through the relocation of industrial facilities, land development, construction of a high-speed railroad, and an extension of the subway. To determine the yearly changing pattern of the urban area, eleven classes were made depending on the trend of development. An algorithm was generalized for the rules to be applied as an unsupervised classification, without the need of training area. The analysis results show that the urban zone of the research area has increased by about 1.53 times, and each correlation graph confirmed the distribution of the Built Up Index (BUI) values for each class. To evaluate the rule-based classification, coverage and accuracy were assessed. When Optimal allowable factor=0.36, the coverage of the rule was 98.4%, and for the test using ground data from 1991 to 2006, overall accuracy was 99.49%. It was confirmed that the method suggested to determine the maximum allowable factor correlates to the accuracy test results using ground data. Among the multiple images, available data was used as best as possible and classification accuracy could be improved since optimal classification to suit objectives was possible. The rule-based urban image classification method is expected to be applied to time series image analyses such as thematic mapping for urban development, urban development, and monitoring of environmental changes.

드론 영상으로부터 월동 작물 분류를 위한 의미론적 분할 딥러닝 모델 학습 최적 공간 해상도와 영상 크기 선정 (The Optimal GSD and Image Size for Deep Learning Semantic Segmentation Training of Drone Images of Winter Vegetables)

  • 정동기;이임평
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1573-1587
    • /
    • 2021
  • 드론 영상은 위성이나 항공 영상보다 공간 해상도가 수배 혹은 수십 배가 높은 초고해상도 영상이다. 따라서 드론 영상 기반의 원격탐사는 영상에서 추출하고자 하는 객체의 수준과 처리해야 하는 데이터의 양이 전통적인 원격탐사와 다른 양상을 보인다. 또한, 적용되는 딥러닝(deep learning) 모델의 특성에 따라 모델 훈련에 사용되는 최적의 데이터의 축척과 크기가 달라질 수밖에 없다. 하지만 대부분 연구가 찾고자 하는 객체의 크기, 축척을 반영하는 영상의 공간 해상도, 영상의 크기 등을 고려하지 않고, 관성적으로 적용하고자 하는 모델에서 기존에 사용했던 데이터 명세를 그대로 적용하는 경우가 많다. 본 연구에서는 드론 영상의 공간 해상도, 영상 크기가 6가지 월동채소의 의미론적 분할(semantic segmentation) 딥러닝 모델의 정확도와 훈련 시간에 미치는 영향을 실험 통해 정량적으로 분석하였다. 실험 결과 6가지 월동채소 분할의 평균 정확도는 공간 해상도가 증가함에 따라 증가하지만, 개별 작물에 따라 증가율과 수렴하는 구간이 다르고, 동일 해상도에서 영상의 크기에 따라 정확도와 시간에 큰 차이가 있음을 발견하였다. 특히 각 작물에 따라 최적의 해상도와 영상의 크기가 다름을 알 수 있었다. 연구성과는 향후 드론 영상 데이터를 이용한 월동채소 분할 모델을 개발할 때, 드론 영상의 촬영과 학습 데이터의 제작 효율성 확보를 위한 자료로 활용할 수 있을 것이다.

GIS를 이용한 통합기준점의 GPS 수신환경 모의 분석 (Simulation Analysis of GPS Reception Environment of Unified Control Points Using GIS)

  • 김태우;윤홍식;김광배;정운철
    • 한국측량학회지
    • /
    • 제35권6호
    • /
    • pp.609-616
    • /
    • 2017
  • 국토지리정보원은 2015년 위성영상과 항공사진으로 기존 통합기준점과의 점간거리를 고려하여 시가지에 2~3km 간격으로 통합기준점 선점하는 배점계획을 수립하였다. 본 연구에서는 GIS를 이용해 통합기준점 후보지에서 GPS 수신환경을 모의하여 최적의 통합기준점 위치를 선정하는 방법을 연구하였다. 이를 위해 위성영상과 항공사진을 이용하여 신규 통합기준점 설치 후보지를 선정하였으며, GIS 스카이라인 분석을 이용해 통합 기준점 주변 건물과의 가시거리를 계산하여 GPS 수신환경을 분석하였다. GIS 스카이라인 분석결과 스카이뷰 관점에서 GPS 위성수신이 가능한 가시위성의 수와 배치상태를 도시하였으며, 통합기준점 GPS 관측시간인 8시간 동안 성균관대학교 두 지점에서 시간대별 PDOP을 평균 계산한 PDOP과 TEQC를 이용해 GPS 관측데이터의 품질 평가한 결과와 비교 분석하였다. GIS를 이용해 GPS 수신환경을 분석한 결과 PDOP이 높은 지점에서는 데이터수신율이 낮아지고 다중경로 오차가 높아지면서 사이클 슬립이 증가하였다. 본 연구를 통해 다수의 통합기준점을 GIS를 이용해 선점하는 경우 GIS로 3차원 공간정보를 구축하고, PDOP을 모의 분석함으로써 GPS 관측데이터의 품질을 확보할 수 있음을 확인하였다.

SAR 위성 영상을 이용한 수계탐지의 최적 머신러닝 밴드 조합 연구 (Selection of Optimal Band Combination for Machine Learning-based Water Body Extraction using SAR Satellite Images)

  • 전현균;김덕진;김준우;수레시 크리쉬난;김재언;김택인;정승환
    • 한국지리정보학회지
    • /
    • 제23권3호
    • /
    • pp.120-131
    • /
    • 2020
  • 인공위성 영상을 기반으로 한 기계판독(machine interpretation) 원격탐사 수계 탐지는 효율적인 수자원 관리, 가뭄 탐지, 홍수 모니터링 등에 큰 도움이 된다. 따라서 본 연구에서는 머신러닝을 기반으로 한 SAR 위성 영상 기반 수계 탐지를 시행하였다. 그러나 SAR 위성 영상만을 사용하였을 경우 음영 효과 또는 도로 등의 수계와 비슷한 산란특성을 가지는 물체로 인하여 비수계가 수계로 오탐지 될 수 있다. 이러한 오탐지를 줄이기 위하여 목포 지역을 촬영한 Cosmo-SkyMed SAR 위성 영상에 모폴로지(Morphology)의 open 연산을 거친 밴드와 DEM(수치표고모델) 밴드, Curvature(곡률) 밴드를 조합하여 중첩한 8가지 경우에 대하여 의미 분할 기법 머신러닝 모델을 학습시켰다. 8가지 머신러닝 모델에 대한 최종 테스트 결과인 Global Accuracy를 구하였으며, 목포 지역의 토지피복지도와의 일치율 역시 비교하였다. 그 결과 SAR 위성 영상과 모폴로지 open 필터를 적용한 밴드, DEM 밴드, Curvature 밴드를 모두 사용한 경우가 Global Accuracy뿐만 아니라 토지피복지도와의 일치율 역시 가장 높음을 확인할 수 있었다. 이때 Global Accuracy는 95.07%였으며, 토지피복지도와의 일치율은 89.93%로 나타났다.