• Title/Summary/Keyword: Optimal Process Planning

Search Result 232, Processing Time 0.022 seconds

An Optimal Tool Selection Method for Pocket Machining (포켓형상가공을 위한 최적공구 선정방법)

  • Kyoung, Young-Min;Cho, Kyu-Kab;Jun, Cah-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.49-58
    • /
    • 1997
  • In process planning for pocket machining, the selection of tool size, tool path, overlap distance, and the calculation of machining time are very important factors to obtain the optimal process planning result. Among those factors, the tool size is the most important one because the others depend on tool size. And also, it is not easy to determine the optimal tool size even though the shape of pocket is simple. Therefore, the optimal selection of tool size is the most essential task in process planning for machining a pocket. This paper presents a method for selecting optimal toos in pocket machining. The branch and bound method is applied to select the optimal tools which minimize the machining time by using the range of feasible tools and the breadth-first search.

  • PDF

A Study on the optimal Process Planning and Die design for manufacturing Bolts by multi-former (다단-포머용 볼트류 제작을 위한 최적의 공정 및 금형설계에 관한 연구)

  • 박철우;김철;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1307-1311
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

  • PDF

Optmization of Cutting Condition based on the Relationship between Tool Grade and Workpiece Material(I) (피삭제와 공구재종의 상관관계에 근거한 절삭조건의 최적화)

  • 한동원;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1038-1043
    • /
    • 1997
  • To adapt the neural network proess for the purpose of determination of optimal utting onditions (optimal cutting speed and feed rate), some selection strategies for the machining factors are necessary, which is considered planning cutting process. In this case, factors that have both nonlinearity and strong relationship must be selected. Although tool grade and chemical properties of workpiece material have strong effect to cutting speed, it's not easy to find a analytic relation between them. In this paper, a mathematical method for determining the optimal amount of cutting (depth of cut, feed rate) is presented by tool goemetry and heat generation during cutting process. And various tool grade and workpiece material groups ase classified based on its chemical properties. Thier chemical composition and hardness are used as input pattern for neural network learnig. The result of learning shows the relationship between tool grade and workpiece material and it is proved that it can be used as a sub-system for automatic process planning system.

  • PDF

Optimal design of multi-former die set by the techniques of horizontal split

  • Kim Chul;Park Chul-Woo;Chang Young-June
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module optimal design technique and horizontal split of die insert were investigated for determining appropriate dimensions of components of multi-former die set. Results obtained, using the modules, enable the design and manufacture of a die set for a multi-former to be more efficiently performed.

Integrated Manufacturing Process Design by Applying Concurrent Engineering Principle (동시공학 원리를 적용한 통합 제작공정 설계)

  • 이희각;김태정;김충관
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.13-23
    • /
    • 1999
  • This paper deals with manufacturing process design of a simplified gun tube applying CE principle. A concept and characteristics of CE, mathematical model for understanding interaction between design and manufacturing, basic elements and related equations for process planning and cost estimating are introduced. A Knowledge-based Computer-Aided Process Planning System(KCAPPS) is constructed, yielding optimal production cost/time for the shape input and selection of appropriate machines and tools.

  • PDF

Accuracy Analysis of Optimal Trajectory Planning Methods Based on Function Approximation for a Four-DOF Biped Walking Model

  • Peng Chunye;ONO Kyosuke
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.452-460
    • /
    • 2005
  • Based on an introduced optimal trajectory planning method, this paper mainly deals with the accuracy analysis during the function approximation process of the optimal trajectory planning method. The basis functions are composed of Hermit polynomials and Fourier series to improve the approximation accuracy. Since the approximation accuracy is affected by the given orders of each basis function, the accuracy of the optimal solution is examined by changing the combinations of the orders of Hermit polynomials and Fourier series as the approximation basis functions. As a result, it is found that the proper approximation basis functions are the $5^{th}$ order Hermit polynomials and the $7^{th}-10^{th}$ order of Fourier series.

Development of Expert System for Cold Forging of Axisymmetric Product - Horizontal Split and Optimal Design of Multi-former Die Set - (준축대칭 제품 냉간단조용 전문가시스템 개발 - 다단포머 금형의 수평분할 밀 최적설계 -)

  • Park, Chul-Woo;Cho, Chun-Soo;Kim, Chul;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.32-40
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and the die design modules consider several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

Optimal control of stochastic continuous discrete systems applied to FMS

  • Boukas, E.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.733-743
    • /
    • 1989
  • This paper deals with the control of system with controlled jump Markov disturbances. A such formulation was used by Boukas to model the planning production and maintenance of a FMS with failure machines. The optimal control problem of systems with controlled jump Markov process is addressed. This problem describes the planning production and preventive maintenance of production systems. The optimality conditions in both cases finite and infinite horizon, are derived. A numerical example is presented to validate the proposed results.

  • PDF

Capacity Planning and Control of Probe Process in Semiconductor Manufacturing (반도체 Probe 공정에서의 생산 능력 계획)

  • Jeong, Bong-Ju;Lee, Young-Hoon
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • In semiconductor manufacturing, the probe process between fabrication and assembly process is constrained mostly by the equipment capacity because most products pass through the similar procedures. The probe process is usually performed in a batch mode with relatively short cycle times. The capability of the probe process can be determined by the optimal combination of the equipments and the products. A probe line usually has several types of equipment with different capacity. In this study, the probe line is modeled in terms of capacity to give the efficient planning and control procedure. For the practical usage, the hierarchical capacity planning procedure is used. First, a monthly capacity plan is made to meet the monthly production plan of each product. Secondly, the daily capacity planning is performed by considering the monthly capacity plan and the daily fabrication output. Simple heuristic algorithms for daily capacity planning are developed and some experimental results are shown.

  • PDF

A Study on Affecting Factor-Construction of Collaborative Planning Process and Effect on Comprehensive Rural Village Development Project (농촌마을종합개발사업의 협력적 계획과정과 계획효과의 영향구조 분석)

  • Kim, Tae-Gu;Lee, Seong-Keun
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.23-43
    • /
    • 2014
  • This study aims to analyze the affecting factors-construction of collaborative planning process and effect on Comprehensive Rural Village Development Project. To this end, targeting the 36 districts which were selected for 2004 Comprehensive Rural Village Development Project and completed their 2010 5-year projects, components of collaborative planning process and planning effect will be drawn and the affecting factors-construction of collaborative planning and effect on Comprehensive Rural Village Development Project will be analyzed below. According to the results of this study, the affecting factors of collaborative planning process of Comprehensive Rural Village Development Project on planning effect, The level of effect of individual component on endogenous variable appeared greatest mostly in the upper groups. In terms of the level of individual component effect, social learning process and interaction among participants affected greatest. The process of Comprehensive Rural Village Development Project is evaluated that it reflected collaborative planning theory of Healey enough. Therefore, in the course of Comprehensive Rural Village Development Project progress, collaborative planning model must pass social learning process and interaction among participants which are the most important components out of collaborative planning process as we saw in the upper groups. And in order to maximize the performance and results of Comprehensive Rural Village Development Project, the following sequential affecting factors model as Figure 7 must be suggested as optimal collaborative planning models of Comprehensive Rural Village Development Project. Based on the results of the study, the policy implication was drawn as follows. First, systematic supplementations in the form of a consultative body are required to perform Comprehensive Rural Village Development Project efficiently. Second, network needs to be built among different participants in Comprehensive Rural Village Development Project process. Third, systematic mechanism is required to improve social learning among different participants. Fourth, systematic rearrangement is required to guarantee the residents' realistic participation in the course of Comprehensive Rural Village Development Project process.