• Title/Summary/Keyword: Optimal Point

Search Result 2,300, Processing Time 0.027 seconds

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

Optimal Control by the Gradient Method (경사법에의한 최적제어)

  • 양흥석;황희융
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.48-52
    • /
    • 1972
  • The application of pontryagin's Maximum Principle to the optimal control eventually leads to the problem of solving the two point boundary value problem. Most of problems have been related to their own special factors, therfore it is very hard to recommend the best method of deriving their optimal solution among various methods, such as iterative Runge Kutta, analog computer, gradient method, finite difference and successive approximation by piece-wise linearization. The gradient method has been applied to the optimal control of two point boundary value problem in the power systems. The most important thing is to set up some objective function of which the initial value is the function of terminal point. The next procedure is to find out any global minimum value from the objective function which is approaching the zero by means of gradient projection. The algorithm required for this approach in the relevant differential equations by use of the Runge Kutta Method for the computation has been established. The usefulness of this approach is also verified by solving some examples in the paper.

  • PDF

Restricted Bayesian Optimal Designs in Turning Point Problem

  • Seo, Han-Son
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.163-178
    • /
    • 2001
  • We consider the experimental design problem of selecting values of design variables x for observation of a response y that depends on x and on model parameters $\theta$. The form of the dependence may be quite general, including all linear and nonlinear modeling situations. The goal of the design selection is to efficiently estimate functions of $\theta$. Three new criteria for selecting design points x are presented. The criteria generalized the usual Bayesian optimal design criteria to situations n which the prior distribution for $\theta$ amy be uncertain. We assume that there are several possible prior distributions,. The new criteria are applied to the nonlinear problem of designing to estimate the turning point of a quadratic equation. We give both analytic and computational results illustrating the robustness of the optimal designs based on the new criteria.

  • PDF

Global Search for Optimal Geometric Path amid Obstacles Considering Manipulator Dynamics (로봇팔의 동역학을 고려한 장애물 속에서의 최적 기하학적 경로에 대한 전역 탐색)

  • 박종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1133-1137
    • /
    • 1995
  • This paper presents a numerical method of the global search for an optimal geometric path for a manipulator arm amid obstacles. Finite term quintic B-splines are used to describe an arbitrary point-to-point manipulator motion with fixed moving time. The coefficients of the splines span a linear vector space, a point in which uniquely represents the manipulator motion. All feasible geometric paths are searched by adjusting the seed points of the obstacle models in the penetration growth distances. In the numerical implementation using nonlinear programming, the globally optimal geometric path is obtained for a spatial 3-link(3-revolute joints) manipulator amid several hexahedral obstacles without simplifying any dynamic or geometric models.

  • PDF

Robust Optimal Design Method Using Two-Point Diagonal Quadratic Approximation and Statistical Constraints (이점 대각 이차 근사화 기법과 통계적 제한조건을 적용한 강건 최적설계 기법)

  • Kwon, Yong-Sam;Kim, Min-Soo;Kim, Jong-Rip;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2483-2491
    • /
    • 2002
  • This study presents an efficient method for robust optimal design. In order to avoid the excessive evaluations of the exact performance functions, two-point diagonal quadratic approximation method is employed for approximating them during optimization process. This approximation method is one of the two point approximation methods. Therefore, the second order sensitivity information of the approximated performance functions are calculated by an analytical method. As a result, this enables one to avoid the expensive evaluations of the exact $2^{nd}$ derivatives of the performance functions unlike the conventional robust optimal design methods based on the gradient information. Finally, in order to show the numerical performance of the proposed method, one mathematical problem and two mechanical design problems are solved and their results are compared with those of the conventional methods.

A study of Optimal Reconfiguration in Distribution Power System using Initial Operating Point (초기 운전점 선정을 통한 배전계통 최적 재구성에 관한 연구)

  • Seo, Gyu-Seok;Kim, Jung-Nyun;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents a problem that reconfigure distribution power system using branch exchange method. Optimal reconfiguration problem calculates line loss, voltage condition about system states of all situations that become different according to line On/off status, and search for optimum composition of these. However, result is difficult to be calculated fast. Because radiated operation condition of system is satisfied using many connection and sectionalize switches in the distribution power system. Therefore, in this paper, optimization method for reducing system total loss and satisfying operating condition of radial and constraints condition of voltage is proposed using the fastest branch exchange. And optimal solution at branch exchange algorithm can be wrong estimated to local optimal solution according to initial operating state. Considering this particular, an initial operating point algorithm is added and this paper showed that optimal solution arrives at global optimal solution.

Economic Dispatch based on Primal Interior Point Method (Primal Interior Point 법에 의한 경제급전)

  • Jung, Leen-Hark;Cho, Yang-Haeng;Park, Kyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.366-368
    • /
    • 2002
  • This paper presents a technique that can obtain an optimal solution for the Security-Constrained Economic Dispatch (SCED) problems using the Interior Point Method (IPM) while taking into account of the power flow constraints. The SCED equations are formulated by using only the real power flow equations from the optimal power flow. Then an algorithm is presented that can linearize the SCED equations based on the relationships among generation real power outputs, loads, and transmission losses to obtain the optimal solutions by applying the linear programming (LP) technique. Finally, the application of the Primal Interior Point Method (PIPM) for solving the optimization problem based on the proposed linearized objective function is presented. The results are compared with the Simplex Method and the Promising results ard obtained.

  • PDF

Sliding Factor Development on Mechanical Emotion in Mobile Phone of Slide Type

  • Lee, Jaein;Byun, Jungwoong;Jeong, Jaehwa;Lim, C.J.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.757-764
    • /
    • 2012
  • Objective: The aim of this study is to find the optimal values of sliding factors which influence the mechanical emotion of users when they use sliding type mobile phones. Background: There are various researches that study the emotion of using mobile phones. They focus the correlation between emotion words and design factors and use the commercial products by the subjects in the experiment. However, it has a limit in finding the optimal point of emotional factors because we can search the restricted values in the mass production of the products. Therefore, we will find the optimal points by realizing the full range of the user's mechanical emotion. Method: First, we need to get the detailed factors which can describe the mechanical emotion in sliding up and down the mobile phone. Next, we find the control factors by considering the correlation between the factors of the sliding emotion and the possibility of quantitative design. To find the optimal points on the control factors, we make a sliding evaluation system which can help users feel the sliding mechanical emotion by realizing control factors. Finally, we find the optimal points by doing the experiment the system being used. Results: The critical values of the factors which are the main variables of this study are Open Max Force and Dead point Ratio. The optimal point of the Open Max Force is 200~250g/f, and the Dead point Ratio is 40~50%. Conclusion: In this study we develop the sliding evaluation system to realize the control factors of the sliding type phone and find the optimal values of the critical factors. Application: The results can be used as the criteria for designing sliding type phone.

Optimal bandwidth in nonparametric classification between two univariate densities

  • Hall, Peter;Kang, Kee-Hoon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.1-5
    • /
    • 2002
  • We consider the problem of optimal bandwidth choice for nonparametric classification, based on kernel density estimators, where the problem of interest is distinguishing between two univariate distributions. When the densities intersect at a single point, optimal bandwidth choice depends on curvatures of the densities at that point. The problem of empirical bandwidth selection and classifying data in the tails of a distribution are also addressed.

  • PDF

FRACTIONAL NONLOCAL INTEGRODIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL IN BANACH SPACES

  • Wang, Jinrong;Wei, W.;Yang, Y.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.79-91
    • /
    • 2010
  • In this paper, a class of fractional integrodifferential equations of mixed type with nonlocal conditions is considered. First, using contraction mapping principle and Krasnoselskii's fixed point theorem via Gronwall's inequailty, the existence and uniqueness of mild solution are given. Second, the existence of optimal pairs of systems governed by fractional integrodifferential equations of mixed type with nonlocal conditions is also presented.