• Title/Summary/Keyword: Optimal PI controller

Search Result 102, Processing Time 0.032 seconds

An optimal scaling gain tuning method for designing a fuzzy logic controller (퍼지로직제어기를 설계하기 위한 최적 비율 이득 조정방법)

  • Shin, Hyunseok;Shim, Hansoo;Kwon, Cheol;Kang, Hyungjin;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.192-194
    • /
    • 1996
  • This paper propose an optimal scaling gain tuning method of the fuzzy PI controller using Genetic Algorithm(GA). Scaling gains can reflect the control resolution and fuzziness of input/output variables. By the scaling gain method, the design of a fuzzy logic controller(FLC) can be simplified without affecting the system performance in comparison with multi-decision table method. In designing a fuzzy logic controller, the analytic approach method for the optimization is unavailable. Therefore GA is excellent optimization algorithms for scaling gain tuning. Using this optimal scaling gain tuning method, a good performance can be achieved both in transient and steady state.

  • PDF

A Study on Speed Control of Induction Motor using the Fuzzy Modifier (퍼지보상기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Kim, Yuen-Chung;Lee, Sang-Suk;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2012-2014
    • /
    • 1998
  • The conventional PI controller has been widely used in industrial applications. If a PI control gain is selected suitable, the PI controller shows very good control performance. But it is very difficult to find the optimal PI control gain. Therefore, in this paper, the 4-rule based fuzzy logic modifier of the conventional PI controller are presented. The fuzzy logic modifier which exhibits a stabilizing effects on the closed-loop system, has good robustness regarding the improperly tuned PI controller. The simulation are performed to verify the capability of proposed control method on vector controlled induction motor drive system.

  • PDF

A Design of Optimal PI Controller of SVC System using Genetic Algorithms (유전 알고리즘을 이용한 SVC 계통의 최적 PI 제어기 설계)

  • Jeong, Hyeong-Hwan;Heo, Dong-Ryeol;Wang, Yong-Pil;Han, Gil-Man;Kim, Hae-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.212-219
    • /
    • 2000
  • This paper deals with a systematic approach to GA-PI controller design for static VAR compensator(SVC) using genetic algorithms(GAs) which are search algorithms based on the mechanics of natural of natural selection and natural genetics, to improve system stability. A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. To verify the robustness of the proposed method, considered dynamic response of generator used deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we proved usefulness of GA-PI controller design to improve the stability of single machine-infinite bus with SVC system.

  • PDF

A Design of Optimal Fuzzy-PI Controller to Improve System Stability of Power System with Static VAR Compensator (SVC를 포함한 전력시스템의 안정도 향상을 위한 최적 퍼지-PI 제어기의 설계)

  • Kim, Hai-Jai;Joo, Seok-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.122-128
    • /
    • 2004
  • This paper presents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors(TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be based on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and applied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

Design of Fuzzy Scaling Gain Controller using Genetic Algorithm

  • Hyunseok Shin;Lee, Sungryul;Hyungjin Kang;Cheol Kwon;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.474-478
    • /
    • 1998
  • This paper proposes a method which can resolve the problem of exisiting fuzzy PI controller using optimal scaling gains obtained by genetic algorithm. The new method adapt a fuzzy logic controller as a high level controller to perform scaling gain algorithm between two pre-determined sets.

  • PDF

Speed Control of a Vector Controlled Induction Motor using Fuzzy-PI controller (퍼지-PI 제어기법을 이용한 유도전동기의 벡터제어)

  • Lee, Dong-Bin;Ryu, Chang-Wan;Hong, Dae-Seung;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2464-2466
    • /
    • 2000
  • When linear PI controller is used in speed control of induction motor, there happen some weaks which is very difficult to find optimal control gain at time of changing speed and load. In this paper, Fuzzy system incorporated with PI controller is proposed in order to that defects. PI gain is calculated by theoretical basis and fuzzy control is translated human expert's knowledge and experiences into rules numerically. Also it modifies and compensates PI gains in realtime. As comparing the motor characteristics of proposed fuzzy-PI speed controller to PI speed controller of a Vector controlled induction motor system in the increasing load torque and speed change during start and stop, The simulation results show robust and good performance.

  • PDF

Maximum Torque Control of SynRM Using Multi-PI Controller (Multi-PI 제어기를 이용한 SynRM의 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.956-957
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using Multi-PI controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ids for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled Multi-PI controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the Multi-PI controller.

  • PDF

Policy Iteration Algorithm Based Fault Tolerant Tracking Control: An Implementation on Reconfigurable Manipulators

  • Li, Yuanchun;Xia, Hongbing;Zhao, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1740-1751
    • /
    • 2018
  • This paper proposes a novel fault tolerant tracking control (FTTC) scheme for a class of nonlinear systems with actuator failures based on the policy iteration (PI) algorithm and the adaptive fault observer. The estimated actuator failure from an adaptive fault observer is utilized to construct an improved performance index function that reflects the failure, regulation and control simultaneously. With the help of the proper performance index function, the FTTC problem can be transformed into an optimal control problem. The fault tolerant tracking controller is composed of the desired controller and the approximated optimal feedback one. The desired controller is developed to maintain the desired tracking performance at the steady-state, and the approximated optimal feedback controller is designed to stabilize the tracking error dynamics in an optimal manner. By establishing a critic neural network, the PI algorithm is utilized to solve the Hamilton-Jacobi-Bellman equation, and then the approximated optimal feedback controller can be derived. Based on Lyapunov technique, the uniform ultimate boundedness of the closed-loop system is proven. The proposed FTTC scheme is applied to reconfigurable manipulators with two degree of freedoms in order to test the effectiveness via numerical simulation.

A Study on the PI Controller of AC Servo Motor using Genetic Algorithm (유전자알고리즘을 이용한 교류서보전동기의 PI 제어기에 관한 연구)

  • Kim, Hwan;Park, Se-Seung;Choi, Youn-Ok;Cho, Geum-Bae;Kim, Pyoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.81-91
    • /
    • 2006
  • Recently, G.A studies have studied and demonstrated that artificial intelligence like G.A networks, G.A PI controller. The design techniques of PI controller using G.A with the newly proposed teaming algorithm was presented, and the designed controller with AC servo motor system. The goal of this paper is to design the AC servo motor using genetic algorithm and to control drive robot. And in this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for genetic algorithm PI controller. Our experimental results show that this approach increases overall classification accuracy rate significantly. Finally, we executed for the implementation of high performance speed control system. It is used a 16-bit DSP, IMS320LF2407, which is capable of the high speed and floating point calculation.

Optimal tuning method for nonlinear PI controllers (비선형 PI 제어기의 최적 조율법)

  • 이동권;곽철규;이문용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1392-1395
    • /
    • 1996
  • Nonlinear PID controllers have increasingly used in current industrial practice because it is robust and is easy to operate. Little guideline and tuning method, however, has been recommended for the nonlinear PID controllers while a lot of result is available for the linear PID controllers. Application guideline and tuning formulae are presented for error square type nonlinear controllers, which are most popular currently, are presented.

  • PDF