• 제목/요약/키워드: Optimal PI Controller

검색결과 102건 처리시간 0.025초

On-line Optimal EMS Implementation for Distributed Power System

  • Choi, Wooin;Baek, Jong-Bok;Cho, Bo-Hyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.33-34
    • /
    • 2012
  • As the distributed power system with PV and ESS is highlighted to be one of the most prominent structure to replace the traditional electric power system, power flow scheduling is expected to bring better system efficiency. Optimal energy management system (EMS) where the power from PV and the grid is managed in time-domain using ESS needs an optimization process. In this paper, main optimization method is implemented using dynamic programming (DP). To overcome the drawback of DP in which ideal future information is required, prediction stage precedes every EMS execution. A simple auto-regressive moving-average (ARMA) forecasting followed by a PI-controller updates the prediction data. Assessment of the on-line optimal EMS scheme has been evaluated on several cases.

  • PDF

On Power System Frequency Control in Emergency Conditions

  • Bevrani, H.;Ledwich, G.;Ford, J. J.;Dong, Z.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.499-508
    • /
    • 2008
  • Frequency regulation in off-normal conditions has been an important problem in electric power system design/operation and is becoming much more significant today due to the increasing size, changing structure and complexity of interconnected power systems. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining power system frequency closer to nominal value. This paper presents a decentralized frequency control framework using a modified low-order frequency response model containing a proportional-integral(PI) controller. The proposed framework is suitable for near-normal and emergency operating conditions. An $H_{\infty}$ control technique is applied to achieve optimal PI parameters, and an analytic approach is used to analyse the system frequency response for wide area operating conditions. Time-domain simulations with a multi-area power system example show that the simulated results agree with those predicted analytically.

유전알리고즘을 이용한 유압모터의 속도제어파라메터 최적화 (Optimization of control parameters for speed control of a hydraulic motor using genetic algorithms)

  • 현장환;안철현;이정오
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.139-145
    • /
    • 1997
  • This study is concerned with the optimizing method of control parameters for a hydraulic speed control system by using genetic algorithms which are general purpose search algorithms based on natural evolution and genetics. It is shown that the genetic altorithms satisfactorily oiptimized control gains of the PI speed control system of an electrohydraulic servomotor and that optimization of control para- meters can be achived without much experience and knowledge for tuning. It is also shown that optimal gains may be determined from fitness distribution curves plotted in given gain spaces.

  • PDF

Adaptive Intelligent Control of Inverted Pendulum Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2372-2377
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,{\dot{x}},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

  • PDF

퍼지 제어기를 이용한 이동 로봇의 재점착 제어 (Re-adhesion Control for Wheeled Robot Using Fuzzy Logic)

  • 권선구;허욱렬;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2423-2425
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient(AFC) according to slip velocity. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the re-adhesion control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. fuzzy logic controller(FLC) is petty useful with slip through that compare fuzzy with PI control for the controller performance. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구 (A study on robust multivariable control of stewart platform type motion simulator)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

Adaptive Intelligent Control of Nonlinear dynamic system Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.146-156
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,\dot{x},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

Power Closed-loop Control of Switched Reluctance Generator for High Efficiency Operation

  • Li, Zhenguo;Gao, Dongdong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.397-403
    • /
    • 2012
  • This paper describes a control method of turn-on/off angles to improve the efficiency of the switched reluctance generator(SRG) with a power closed-loop control system, and the inner-loop of the system is current hysteresis control. The SRG control system is constituted by the PI power controller and the two-level current hysteresis controller. By measuring and analyzing the system losses of different reference powers, speeds and turn-on/off angles, selection strategy of optimal turn-on/off angles is discussed. The proposed method is simple, reliable, and easy to achieve.

PV Water Pumping 시스템을 위한 BLDC 모터 제어 (Brushless DC Motor Control for Photovoltaic Water-Pumping System)

  • 김성남;최성호;조정민;전기영;이승환;한경희
    • 전기학회논문지P
    • /
    • 제50권3호
    • /
    • pp.109-116
    • /
    • 2001
  • In this paper, we adapted BLDC motor to PV water pumping systems to maintain high efficiency in the wide speed area. Also, to design confidence we adapted the vector control that drive the maximum torque at each speed limit. We designed optimal gain value of current, speed and pressure PI controller. Inverter gate pulse used Space Vector PWM to reduce torque pulsation of BLDC motor. According to, it was improve general matters of high water storage tank method by direct water supply pumping method.

  • PDF

부하의 변화를 고려한 연료전지 스택 동특성 모델링 (Fuel Cell Stack Dynamics Modeling Considering Load Variation)

  • 고정민;김종수;최규영;강현수;이병국
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.93-99
    • /
    • 2009
  • In this paper, transient voltage response of Polmer Electrolyte Membrane Fuel Cell (PEMFC) stack is analyzed and voltage dynamic characteristic is modeled for optimal design of power conditioning system (PCS). According that the load is changed, the corresponding operating voltage of fuel cell stack is also varied with a certain deep and rising time due to the chemical and mechanical responses. This transient behavior can affect on the operation with respect of PI gain in controller, duty ratio, capacitor of capacitor and so on. So in this paper the detailed theoretical analysis of transient voltage dynamics is explained and the methodology of dynamic modeling is introduced. In addition, the validity and feasibility of the proposed dynamic model is verified by experimental results under various load conditions.