• Title/Summary/Keyword: Optimal Model

Search Result 8,354, Processing Time 0.034 seconds

Optimization of Chassis Frame by Using D-Optimal Response Surface Model (D-Optimal 반응표면모델에 의한 섀시 프레임 최적설치)

  • Lee, Gwang-Gi;Gu, Ja-Gyeom;Lee, Tae-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.894-900
    • /
    • 2000
  • Optimization of chassis frame is performed according to the minimization of eleven responses representing one total frame weight, three natural frequencies and seven strength limits of chassis frame that are analyzed by using each response surface model from D-optimal design of experiments. After each response surface model is constructed form D-optimal design and random orthogonal array, the main effect and sensitivity analyses are successfully carried out by using this approximated regression model and the optimal solutions are obtained by using a nonlinear programming method. The response surface models and the optimization algorithms are used together to obtain the optimal design of chassis frame. The eleven-polynomial response surface models of the thirteen frame members (design factors) are constructed by using D-optimal Design and the multi-disciplinary design optimization is also performed by applying dual response analysis.

An Optimal Allocation Model for SAM-X (차기유도무기의 최적배치에 관한 모형)

  • 김승빈;전건욱
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.1
    • /
    • pp.48-69
    • /
    • 2004
  • An optimal allocation model for SAM-X by using a set covering model is suggested. This allocation model considers to guarantee the maximum security of vital areas from the attack of enemy aircraft(s) and missiles. In order to formulate this model, we applied the concept of parallel structure reliability to set covering model. This model gives both direction of the primary target line and location of the facility. When applied this model to the real situation, the solution of this model can be used to the references of decision making for the optimal military facility allocation.

Topology Optimal Design for Lightweight Shape of the Vehicle Mechanical Component (수송기계부품의 경량화 형상을 위한 위상최적설계)

  • 황영진;강신권;김종범;이석순;최창곤;손재홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.177-184
    • /
    • 2003
  • In this study we performed optimal design for the vehicle mechanical component which satisfies both a sufficient stiffness and a lightweight using topology optimization technique. The FEA for the initial model before optimal design is performed by ABAQUS/Standard. And, we suggest optimization model using the topology optimal design program Altair Optisturuct 3.6. The FEA of optimal design is performed under the same condition as the initial model. We performed the FEA fur the topology optimal design model and verified the validity of the present method.

Symmetric D-Optimal Designs for Log Contrast Models with Mixtures

  • Lim, Yong B.
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 1987
  • The linear and quadratic log contrast model with mixtures on the strictly positive simplex, $$ x_{q-1} = {(x_1, \cdots, x_q):\sum x_, = 1 and \delta \leq \frac{x_i}{x_j} \leq \frac{1}{\delta} for all i,j},$$ are considered. Using the invariance arguments, symmetric D-optimal designs are investigated. The class of symmetric D-optimal designs for the linear log contrasts model is given. Any D-optimal design for the quadratic log contrast model is shown to metric D-optimal designs for q=3 and 4 cases are given.

  • PDF

Optimal Road Maintenance Section Selection Using Mixed Integer Programming (혼합정수계획법을 활용한 도로포장 보수구간 선정 최적화 연구)

  • Cho, Geonyoung;Lim, Heejong
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.65-70
    • /
    • 2017
  • PURPOSES : Pavement Management System contains the data that describe the condition of the road. Under limited budget, the data can be utilized for efficient plans. The objective of this research is to develop a mixed integer program model that maximizes remaining durable years (or Lane-Kilometer-Years) in road maintenance planning. METHODS : An optimization model based on a mixed integer program is developed. The model selects a cluster of sectors that are adjacent to each other according to the road condition. The model also considers constraints required by the Seoul Metropolitan Facilities Management Corporation. They select two lanes at most not to block the traffic and limit the number of sectors for one-time construction to finish the work in given time. We incorporate variable cost constraints. As the model selects more sectors, the unit cost of the construction becomes smaller. The optimal choice of the number of sectors is implemented using piecewise linear constraints. RESULTS : Data (SPI) collected from Pavement Management System managed by Seoul Metropolitan City are fed into the model. Based on the data and the model, the optimal maintenance plans are established. Some of the optimal plans cannot be generated directly in existing heuristic approach or by human intuition. CONCLUSIONS:The mathematical model using actual data generates the optimal maintenance plans.

Optimal Groundwater Management Model for Coastal Regions Using Parallel Genetic Algorithm

  • Park, Nam Sik;Hong, Sung Hun;Shim, Myung Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.77-89
    • /
    • 2004
  • A computer model is developed to assess optimal ground water pumping rates and optimal locations of wells in a coastal region. A sharp interface model is used to simulate the freshwater and salt water flows. Drawdown, upconing, saltwater intrusion and the contamination of well are considered in this model. A genetic algorithm with parallel processing is used to identify the optimal solution.

  • PDF

Optimal design of parallel noncontinuous units with feedstock/product storages (원료및 제품저장조를 포함하는 병렬 비연속 공정의 최적설계)

  • Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.532-541
    • /
    • 1997
  • This article derives an analytic solution to determine the optimal size of multiple noncontinuous process and storage units. The total cost to be minimized consists of the setup cost of noncontinuous processing units and the inventory holding cost of feedstock/product storages. A novel approach, which is called PSW(Periodic Square Wave) model, is applied to represent the material flow among non-continuous units and storages. PSW model presumes that the material flow between unit and storage is periodic square wave shaped. The resulting optimal unit size has similar characteristics with the classical economic lot sizing model such as EOQ(Economic Order Quantity) or EPQ(Economic Production Quantity) model in a sense that the unit size is determined as the balance between setup and inventory holding cost. However, the influence of inventory holding cost of PSW model is different from that of EOQ/EPQ model. EOQ/EPQ model includes only the product inventory holding cost but PSW model includes all inventory holding costs around the non-continuous unit with proportional contribution. PSW model is suitable for analyzing interlinked process-storage system. The optimal lot size of PSW model is smaller than that of EOQ/EPQ model. This is quitea remarkable result considering that the EOQ/EPQ model has been is widely used since last half century.

  • PDF

Input Variable Decision of the Predictive Model for the Optimal Starting Moment of the Cooling System in Accommodations (숙박시설 냉방 시스템의 최적 작동 시점 예측 모델 개발을 위한 입력 변수 선정)

  • Baik, Yong Kyu;Yoon, Younju;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.105-110
    • /
    • 2015
  • Purpose: This study aimed at finding the optimal input variables of the artificial neural network-based predictive model for the optimal controls of the indoor temperature environment. By applying the optimal input variables to the predictive model, the required time for restoring the current indoor temperature during the setback period to the normal setpoint temperature can be more precisely calculated for the cooling season. The precise prediction results will support the advanced operation of the cooling system to condition the indoor temperature comfortably in a more energy-efficient manner. Method: Two major steps employing the numerical computer simulation method were conducted for developing an ANN model and finding the optimal input variables. In the first process, the initial ANN model was intuitively determined to have input neurons that seemed to have a relationship with the output neuron. The second process was conducted for finding the statistical relationship between the initial input variables and output variable. Result: Based on the statistical analysis, the optimal input variables were determined.

Optimal design for face milling cutter by simulation

  • Kim, J.H.;Lee, B.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.76-85
    • /
    • 1993
  • Based on the cutting force model, three-dimensional optimal design model was developed and optimal designed tool which is minimized cutting force is developed by computer simulation technique. In this model the objective function which is minimized resultant cutting force was used and the variables are radial rake angle, axial rake angle, lead angle of the tool. The cutting forces using conventional and optimal tools by simulation, are compared and analyzed in time and frequency domains. In time domain the cutting force of optimal tool in feed direction was more reduced and less fluctuated than that of conventional tool. Cutting forces of optimal tool in X-and Z-directions are shown a little increased than those of conventional tool. In frequency domain amplitude of insert frequency components of optimal tool in feed direction was more reduced than that of convent- ional tool. The amplitudes of insert frequency components of optimal tool in X-and Z-direction are a little increased than those of conventional tool. As the reduction of amplitude and fluctuations of the cutting force, Optimal tool is considered that tool life and surface roughness would be improved, and stable cutting would be expected.

  • PDF