• Title/Summary/Keyword: Optimal Machining Condition

Search Result 118, Processing Time 0.022 seconds

The Selection of the Optimal Condition of Plug using the Taguchi Method (다구찌기법을 이용한 플러그 최적가공조건 선정)

  • Kim, Nam-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.109-114
    • /
    • 2011
  • Manufacturing process of plugs is firstly performed in the making of FRP yacht so it is an essential process for making original form. In the developed countries, it has been useful to manufacture structures of streamlined forms or complex forms, which have been difficult to manufacture due to limits of the traditional hand-made technology, by introducing 5-axis machining technology. In this study, the factors that affect most in the machining were found by using Taguchi Method in order to select the optimized machining conditions for 5-axis machines, and the ways to improve the surface roughness of machined products by applying those factors.

Design of Myopic Aspherical Ophthalmic Lenses with Peripheral Clear Vision and Properties of Its Ultra-Precision Machining (선명한 주변시를 가진 근시용 비구면 안경렌즈 설계와 초정밀 가공 특성)

  • Kim, Dong-Ik;Huh, Myeng-Sang;Lee, Gil-Jae;Park, Soon-Sub;Won, Jong Ho;Kim, Geon Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1290-1295
    • /
    • 2012
  • Oblique astigmatism according to the rotation of the eye has to be removed for obtaining peripheral clear vision in ophthalmic lenses. For this reason, we calculated tangential and sagittal power using third-order approximation theory and then controlled conic constant for the difference of the two powers to converge to 0 regardless of the rotation angle of the eye. As a result, an aspherical ophthalmic lens without oblique astigmatism was designed. Also, we found optimal machining condition to the lens material using factorial design and finally fabricated the designed lens through ultra-precision machining with that condition.

Micromachining of the Si Wafer Surface Using Femtoseocond Laser Pulses (펨토초 레이저를 이용한 실리콘 웨이퍼 표면 미세가공 특성)

  • Kim, Jae-Gu;Chang, Won-Seok;Cho, Sung-Hak;Whang, Kyung-Hyun;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.184-189
    • /
    • 2005
  • An experimental study of the femtosecond laser machining of Si materials was carried out. Direct laser machining of the materials for the feature size of a few micron scale has the advantage of low cost and simple process comparing to the semiconductor process, E-beam lithography, ECM and other machining process. Further, the femtosecond laser is the better tool to machine the micro parts due to its characteristics of minimizing the heat affected zone(HAZ). As a result of line cutting of Si, the optimal condition had the region of the effective energy of 2mJ/mm-2.5mJ/mm with the power of 0.5mW-1.5mW. The polarization effects of the incident beam existed in the machining qualities, therefore the sample motion should be perpendicular to the projection of the electric vector. We also observed the periodic ripple patterns which come out in condition of the pulse overlap with the threshold energy. Finally, we could machined the groove with the linewidth of below $2{\mu}m$ for the application of MEMS device repairing, scribing and arbitrary patterning.

Searching Optimal Cutting Condition for Surface Roughness In Turning Operation on Inconel 718 using Taguchi Method (다구찌 방법을 이용한 Inconel 718 소재의 선삭가공에서 표면거칠기 최적화)

  • Cha, Jin-Hoon;Han, Sang-Bo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.295-300
    • /
    • 2010
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions arc tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

Surface Roughness for the Machining of Inclined Planes of Aluminum (알루미늄 경사면 절삭의 표면거칠기)

  • Han, Jeong-Sik;Jung, Jong-Yun;Moon, Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.11-18
    • /
    • 2008
  • Surface roughness is an important factor to evaluate machined parts in precision machining. This is the major measure of surface quality. This research sets up experiments to select the factors which affect surface roughness in the machining of inclined planes of aluminum. The levels of the selected experimental factors are chosen to evaluate the relationship between the surface roughness of the machined parts and machining parameters. This is to find out the optimal machining condition in the inclined planes. The objective of this research is to improve the surface roughness of the machined products by using the ANOVA analysis. The factors for the experiments are cutting speed, feed rate, cutting depth, and cutting width. The experimental levels of the factors are two for the cutting depth and width. For the cutting speed and feed rate, their levels are three because they are more sensitive for the surface roughness than the other two. The inclined planes are machined by 5-axis machining equipment.

Cutting Characteristics of Oxygen-Free Using the Ultra Precision Machining (초정밀가공기를 이용한 무산소동 절삭특성)

  • 고준빈;김건희;원종호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.120-126
    • /
    • 2002
  • The needs of ultra-precisely machined parts are increasing more and more. But the experimental data required to ultra precision machining of nonferrous metal is insufficient. The behavior of cutting in micro cutting area is different from that of traditional cutting because of the size effect. Copper is widely used as optical parts such as LASER reflector's mirror and multimedia instrument. In experimental, after oxygen-free copper is machined by ultra precision machine with natural mono crystal diamond tool (NCD) and synthetic poly crystal diamond tool (PCD), we compared chip formation and tool's wear according to used tool. Also, we researched optimized cutting condition with the results measured according to cutting condition such as spindle speed, feed rate and depth of cut. As a result, the optimal working condition that makes good surface roughness is obtained. The surface roughness is good when spindle speed is above 80 m/min, and feed rate is small and depth of cut is above 0.5 ${\mu}{\textrm}{m}$. In cutting of klystron anode and cavity 3.2 nmRa of surface roughness is obtained.

Study on Dressing Conditions for Creep-feed in Cubic Boron Nitride Grinding of OrthoMTA Compacters (OrthoMTA 컴팩터의 크리프피드 CBN 연삭을 위한 드레싱 조건 연구)

  • Maeng, Heeyoung;Baek, Eun-Pyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.69-74
    • /
    • 2014
  • An OrthoMTA compacter is made by machining a Ni-Ti alloy wire using tapered helix creep-feed grinding machines. This aim of this study is to find the optimal dressing conditions to sharpen the corner of a cubic boron nitride (CBN) wheel. On the basis of the results of various experiments, it is verified that the most important factors in dressing are the dressing depth and feeding method, whereas the feed rate has less importance for producing a smaller corner R value. The study also finds the optimum dressing depth to reduce the dressing time, a feeding speed and method to stabilize the machining, and the mesh grade for the CBN wheel to make the groove of the compacter deeper.

Cutting Characteristics of Dry Turning Using Compressed Air (압축공기를 이용한 건식 선삭가공의 절삭특성)

  • Song Chun-Sam;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing, and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore dry cutting becomes an unavoidable assignment and a lot of researches have studied cutting methods without using cutting fluid. Because dry turning is a continuous work, tools life is reduced by continuous heat generation and surface gets rough due to reduced lubrication, so it is important to consider these situations. In this paper, the way of selecting the optimal machining condition by the minimum number of experiments and the effectiveness of using compressed air in high hardness materials through Taguchi method have been found. Dry cutting using compressed air showed better cutting characteristics than normal dry cutting with respect to by cutting force, tool wear, and surface roughness. Also, the optimal machining condition f3r dry cutting using compressed air could be selected through Taguchi method.

A Basic Study on the Evaluation of Flat End-mill Coated TiAlN (TiAlN코팅 평 엔드밀의 성능평가에 관한 기초 연구)

  • 유중학;국정한;김문기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • The purpose of this study is an evaluation of flat end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting farce, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition.

  • PDF

Optimal Machining Condition of Drying Turning (건조 선삭의 최적 가공 조건)

  • Jang, S.S.;Lee, J.I.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.49-55
    • /
    • 2011
  • Recently, various efforts to make more speedy and precision machine tool to improve productivity and also various efforts to solve environmental problem are going on, so that dry cutting in manufacturing industry, which needs environmental conscious design and development of manufacturing technique, is becoming a very important assignment to solve. Because dry cutting does not use cutting fluid, we need other methods that can be used instead of cutting fluid, which does cooling, lubricating, chip washing, and anti-corrosion. Especially, because turning is a continuous work, the consideration of tool life and surface roughness due to continuous heat and poor lubrication is important. The purposes of this paper are the consideration of how well the compressed air can work instead of cutting fluid, and also the development of the method to select the optimum machining condition by the minimum numbers of experiments through the Taguchi method.