• Title/Summary/Keyword: Optimal Load Distribution

Search Result 280, Processing Time 0.038 seconds

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations (차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향)

  • Lee, Jin-Woong;Kim, Kyeong-Uk;Gim, Dong-Hyeon;Choi, Kyu-Jeong
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.

Finite Element Analysis of Stress Distribution around Patterned Implants

  • Cho, Lee-Ra;Huh, Yoon-Hyuk;Kim, Dae-Gon;Park, Chan-Jin
    • Journal of Korean Dental Science
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effect of patterning on the stress distribution in the bone tissue using the finite element analysis (FEA) model. Materials and Methods: For optimal comparison, it was assumed that the implant was axisymmetric and infinitely long. The implant was assumed to be completely embedded in the infinitely long cortical bone and to have 100% bone apposition. The implant-bone interface had completely fixed boundary conditions and received an infinitely big axial load. von Mises stress and maximal principal stress were analyzed. Conventional thread and 2 or 3 patterns on the upper and lower flank of the thread were compared. Result: The surface areas of patterned implants were increased up to 106~115%. The thread with patterns distributed stress better than conventional thread. Patterning in threads may produce more stress in the implant itself, but reduce stress in the surrounding bone. Stress patterns of von Mises stress were favorable with patterns, while the maximal principal stress was increased with patterns. Patterns in the lower flank showed favorable stress distribution. Conclusion: The patterns in implant thread reduce the stress generated in surrounding bone, but the number and position of patterns were crucial factors in stress distribution.

Bus Splitting Techniques for Low Power SoC Design (저 전력 시스템 온 칩 설계를 위한 버스 분할 기술)

  • Lim Hoyeong;Yoon Misun;Shin Hyunchul;Park Sungju
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.6
    • /
    • pp.324-332
    • /
    • 2005
  • In general, bus system consumes a very significant portion of power in a chip. Bus splitting can be used to reduce the energy dissipation and to reduce the Propagation delay on the bus by lowering the parasitic load of each bus segment. Data exchange probability distribution between a set of interconnected processing elements affects the average energy dissipation of the splitted bus architectures. In this research, we have developed tree-based bus splitting techniques and design methodologies, as an extension of horizontally aligned bus splitting. We have developed the methodology to select near-optimal bus architectures for low energy dissipation when data exchange probability distribution of a system is given. Experimental results show that the proposed techniques can reduce energy dissipation on the bus by up to 83$\%$.

Effect of arbitrarily manipulated gap-graded granular particles on reinforcing foundation soil

  • Xin, Zhen H.;Moon, Jun H.;Kim, Li S.;Kim, Kab B.;Kim, Young U.
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.439-444
    • /
    • 2019
  • It is generally known that high strength soil is indicative of well-graded particle size distribution. However, there are some special cases of firm ground despite poor grade distribution, especially a specific gap-graded soil. Based on these discoveries, this study investigated the development of an additive of gap-graded soils designed to increase soil strength. This theoretical concept was used to calculate the mixed ratio required for optimal soil strength of the ground sample. The gap-graded aggregate was added according to Plato's polyhedral theory and subsequently calculated ratio and soil strength characteristics were then compared to characteristics of the original soil sample through various test results. In addition, the underground stress transfer rate was measured according to the test conditions. The test results showed that the ground settlement and stress limit thickness were reduced with the incorporation of gap-graded soil. Further field tests would confirm the reproducibility and reliability of the technology by using gap-graded soil to reinforce soft ground of a new construction site. Gap-graded soil has the potential to reduce the construction cost and time of construction compared to other reinforcing methods.

Finite Element Analysis for the Optimal Shape of the High Voltage Insulator for Power Transmission Lines (송전선로용 고전압 절연체의 최적 형상에 대한 유한요소 해석)

  • Kim, Taeyong;Sanyal, Simpy;Rabelo, Matheus;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.66-71
    • /
    • 2022
  • The insulator used for the transmission line is a device that is bonded with a cap, pin, ceramic, and cement to withstand insulation capacity and mechanical load. The insulator design can help to reduce the dispersion of the electric field; thus, the optimization of today's design, especially as demanded power grows, is critical. The designs of four manufacturers were used to perform a comparative analysis. Under dry circumstances of the new product, an electric field distribution study was done with no pollutants attached. Manufacturer D's design has the best voltage uniformity of 24.33% and the arc length of 500 mm or more. Manufacturer C's design has an equalizing voltage of more than 2% higher than that of other manufacturers. The importance of the design of the insulator and the number of connections according to the installation conditions is very efficient for transmission lines that will increase in the future.

A Study on Power Outage Cost Analysis according to Distribution System Resilience and Restoration Strategies (배전계통 복원력 확보 및 복원 전략에 따른 정전비용분석에 관한 연구)

  • Sehun Seo;Hyeongon Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.18-24
    • /
    • 2023
  • Severe natural disasters and man-made attacks such as terrorism are causing unprecedented disruptions in power systems. Due to rapid climate change and the aging of energy infrastructure, both the frequency of failure and the level of damage are expected to increase. Resilience is a concept proposed to respond to extreme disaster events that have a low probability of occurrence but cause enormous damage and is defined as the ability of a system to recover to its original function after a disaster. Resilience is a comprehensive indicator that can include system performance before and after a disaster and focuses on preparing for all possible disaster scenarios and having quick and efficient recovery actions after an incident. Various studies have been conducted to evaluate resilience, but studies on economic damage considering the duration of a power outage are scarce. In this study, we propose an optimal algorithm that can identify failures after an extreme disaster and restore the load on the distribution system through emergency distributed power generation input and system reconfiguration. After that, the cost of power outage damage is analyzed by applying VoLL and CDF according to each restoration strategy.

A Study on Development of Pinhead Forming Process using Hinge Belt Typed Chipconveyor for Machine Tools (공작기계용 힌지벨트형 칩컨베이어 핀헤드 성형공정 개발에 관한 연구)

  • Park, Dong-Geun;Choi, Chi-Hyuk;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • This paper presents an investigation into the pinhead forming process with the objective of finding the optimal forming conditions. In order to this, the orbital forming analysis of a heading MIG was carried out using the explicit finite element method. Relationships between temperature by forming of load and stresses, rake angle by forming final shape and stress distribution were investigated through analysises in order to find an efficient solution. As a result, the higher temperature and orbital rake angle were the better forming conditions.

A study of the Distribution system of Harmonic Analsys and reduction of EDSA (EDSA를 이용한 수용가 설비의 전력품질 분석)

  • Kim, Yong-Ha;Lee, Bum;Lee, Sung-Jun;Lee, Jae-Geol;Yeon, Jun-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.319-324
    • /
    • 2002
  • This paper describes analysis of power quality in distribute network system. EDSA is used for simulations to the teal model system. Harmonic load flow, harmonic frequency scan studies, distortion levels, and filter design method. Through this paper, minimized injected harmonic by computating the capacitor of optimal filter satisfied with IEEE Std-519 applying to distribute system are analysed through detailed simulation.

  • PDF

A study on the planning for construction and expanding of distribution substation considering contingency (상정사고를 고려한 배전용 변전소 신,증설 계획 수립에 관한 연구)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Han, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.552-554
    • /
    • 2000
  • This paper presents algorithm to plan construction and expanding of substation considering contingency accidents by proposing utilization factor according to configuration of bank system. In this paper, at first, proper sphere of supply area in each district which could be standardized with respect to its supply capacity is established under assumption which was made long term load forecasting in district respectively. Secondly, goal of utilization ratio according to configuration of substation bank was set to keep reliability by remaining sound bank when it happen to one bank accidents Finally, optimal construction and expanding of substation considering economy and reliability simultaneously about substation to exceed these ratio could be anticipated.

  • PDF