• Title/Summary/Keyword: Optimal Layouts

Search Result 39, Processing Time 0.019 seconds

The Influence on Readability by the Visual Characters Layout at the TV Home Shopping Broadcasting (TV홈쇼핑 방송영상 자막화면 구성이 가독성에 미치는 영향)

  • Shin, Moon Kyu;Seo, In Ho;Choi, Seong Jhin
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.126-137
    • /
    • 2018
  • Visual characters used in television affect the viewers in a different way from printed media. This paper analyzed the visual characters presented in each home shopping channel and their year-by-year characteristics in terms of layouts. Based on the results, the readability was analyzed according to different layouts, suggesting optimal layouts that allows for better communication with the viewers. The purpose of this study is thus to focus on the visual character layouts, which have not been fully explored to date, in order to identify the most effective one among basic locations of visual characters. The results indicate that the bottom location shows higher readability than top. The right side showed higher preference than left, while readability did not demonstrate a significant difference. As for the L-bar and reverse L-bar, the L-bar arrangement was shown preferable in terms of readability. Finally, the layout should be determined considering the readability by location.

A New Exact Algorithm Using the Stair Structure for the Pallet Loading Problem (계단 구조를 이용한 팔레트적재문제의 새로운 해법)

  • Ji, Yeong-Geun;Jin, Go-Whan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.43-53
    • /
    • 2009
  • The pallet loading problem(PLP) requires the best orthogonal layout that loads the maximum number of identical boxes(small rectangle) onto a pallet(large rectangle). Since the high pallet utilization saves the distribution and storage costs, many heuristic and exact algorithms have been developed so far. Martins and Dell have found the optimal layouts for the all PLPs less than or equal to 100 boxes except for only 5 problems in their recent research. This paper defines the 'stair structure' and proposes a new exact algorithm applying it. In order to show the priority of the proposed algorithm, computational results are compared to previous algorithms and the optimal layouts for the S unsolved problems are given.

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms (유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계)

  • Yoon, I.S.;Choi, H.S.;Kim, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF

Optimal Design of Fixture Layouts in Multi-Station Assembly Processes

  • Kim, Pan-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.369-372
    • /
    • 2006
  • Optimal engineering design is challenging because nonlinear objective functions need to be evaluated in a high-dimensional space. This paper presents a data-mining aided optimal design method. The method is employed in designing an optimal multi-station fixture layout. Its benefit is demonstrated by a comparison with currently available optimization methods.

  • PDF

Topological material distribution evaluation for steel plate reinforcement by using CCARAT optimizer

  • Lee, Dongkyu;Shin, Soomi;Park, Hyunjung;Park, Sungsoo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.793-808
    • /
    • 2014
  • The goal of this study is to evaluate and design steel plates with optimal material distributions achieved through a specific material topology optimization by using a CCARAT (Computer Aided Research Analysis Tool) as an optimizer, topologically optimally updating node densities as design variables. In typical material topology optimization, optimal topology and layouts are described by distributing element densities (from almost 0 to 1), which are arithmetic means of node densities. The average element densities are employed as material properties of each element in finite element analysis. CCARAT may deal with material topology optimization to address the mean compliance problem of structural mechanical problems. This consists of three computational steps: finite element analysis, sensitivity analysis, and optimality criteria optimizer updating node densities. The present node density based design via CCARAT using node densities as design variables removes jagged optimal layouts and checkerboard patterns, which are disadvantages of classical material topology optimization using element densities as design variables. Numerical applications that topologically optimize reinforcement material distribution of steel plates of a cantilever type are studied to verify the numerical superiority of the present node density based design via CCARAT.

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.

An Adaptive Approximation Method for the Interconnecting Highways Problem in Geographic Information Systems (지리정보시스템에서 고속도로 연결 문제의 가변적 근사기법)

  • Kim, Joon-Mo;Hwang, Byung-Yeon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.2 s.14
    • /
    • pp.57-66
    • /
    • 2005
  • The Interconnecting Highways problem is an abstract of many practical Layout Design problems in the areas of VLSI design, the optical and wired network design, and the planning for the road constructions. For the road constructions, the shortest-length road layouts that interconnect existing positions will provide many more economic benefits than others. That is, finding new road layouts to interconnect existing roads and cities over a wide area is an important issue. This paper addresses an approximation scheme that finds near optimal road layouts for the Interconnecting Highways problem which is NP-hard. As long as computational resources are provided, the near optimality can be acquired asymptotically. This implies that the result of the scheme can be regarded as the optimal solution for the problem in practice. While other approximation schemes can be made for the problem, this proposed scheme provides a big merit that the algorithm designed by this scheme fits well to given problem instances.

  • PDF

Design of an Automatic Placement System for PCBs (PCB 자동 배치 시스템의 설계)

  • 장명수;이장순;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.104-115
    • /
    • 1994
  • This paper presents the design of a placement sysyem integrated in PCB design system. to get an optimal component positioning from part and net list. Unplaced components are placed in initial process using modified cluster development algorithm and are swapped in improvement process using the GFDR(Generalized Force Directed Relaxation) algorithm. The result is optimized in post process by component rotating or pin/gate swapping. Experimental results shwo that the placement system produces manufacturable layouts which are optimal in terms of total routing length.

  • PDF

Influence of slot width on the performance of multi-stage overtopping wave energy converters

  • Jungrungruengtaworn, Sirirat;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.668-676
    • /
    • 2017
  • A two-dimensional numerical investigation is performed to study the influence of slot width of multi-stage stationary floating overtopping wave energy devices on overtopping flow rate and performance. The hydraulic efficiency based on captured crest energy of different device layouts is compared with that of single-stage device to determine the effect of the geometrical design. The results show optimal trends giving a huge increase in overtopping energy. Plots of efficiency versus the relative slot width show that, for multi-stage devices, the greatest hydraulic efficiency is achieved at an intermediate value of the variable within the parametric range considered, relative slot width of 0.15 and 0.2 depending on design layouts. Moreover, an application of adaptive slot width of multi-stage device is investigated. The numerical results show that the overall hydraulic efficiency of non-adaptive and adaptive slot devices are approximately on par. The effect of adaptive slot width on performance can be negligible.