• Title/Summary/Keyword: Optimal Height

Search Result 801, Processing Time 0.027 seconds

Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation

  • Hye Min Lim;Kyeong Ok Kim;Hanna Kim;Sang Myeong Oh;Young Ho Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30° to 60° in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.

Studies on the Optimal Location of Retail Store Considering the Obstacle and the Obstacle-Overcoming Point

  • Minagawa, Kentaro;Sumiyoshi, Kazushi
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.129-133
    • /
    • 2004
  • Studies on the optimal location of retail store have been made in case of no obstacle(Minagawa etal. 1999). This paper deals with the location problem of retail store considering obstacles (e.g. rivers, railways, highways, etc.) and obstacle-overcoming points (e.g. bridges, railway crossings, zebra crossings, overpasses, etc.). We assume that (1) commercial goods dealt here are typically convenience goods, (2) the population is granted as potential demand, (3) the apparent demand is a function of the maximum migration length and the distance from the store to customers, (4) the scale of a store is same in every place and (5) there is no competitor. First, we construct the basic model of customers' behavior considering obstacles and obstacle-overcoming points. Analyzing the two dimensional model, the arbitrary force attracting customers is represented as a height of a cone where the retail store is located on the center. Second, we formulate the total demand of customers and determine the optimal location that maximizes the total demand. Finally, the properties of the optimal location are investigated by simulation.

Order-picking Algorithm for Optimizing Operation Path of Orchard Speed Sprayer (과수원 스피드스프레이어의 작업 경로 최적화를 위한 오더 피킹 알고리즘)

  • Park, Tu-San;Hwang, Kyu-Young;Cho, Seong-In
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • The purpose of this study was to develop an optimal path planning program for autonomous speed sprayer in orchard. A digital map which contained coordinate information and entity information including height, width, radius of main stem, and disease of a trees was developed to build an optimal path. The digital map, dynamic programming and order-picking algorithm were used for planning an optimal path for autonomous speed sprayers. When this algorithm applied to rectangular-shaped orchards to travel whole trees, the developed program planned the same working path and same traveling distance as those of created by conventional method. But for irregular-shaped orchards, developed program planned differently and 5.06% shorter path than conventional method. When applied to create path for multi-selected trees, irregular-shaped orchards showed 13.9% shorter path and also rectangular-shaped orchards showed 9.1% shorter path. The developed program always planned shorter path than the path created by conventional method despite of variation of shape of orchards.

Optimal Measuring Point Selection Method of Indoor Temperature using CFD Analysis (CFD 해석을 이용한 실내 온도 최적 측정 위치 선정 방법)

  • Lee, Min-Goo;Jung, Kyung-Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1559-1566
    • /
    • 2012
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We made 3-dimensional model of the testbed using DesignBuilder software, and ran the CFD. We selected the optimum temperature measurement location of 1.5 m height from the floor and low temperature variation. The experiments were conducted 30 temperature and humidity sensors in real place. After that, we confirmed the results of temperature change.

Simulation of Surface Coverage Made by Impeller Type Shot-peening Machines (임펠러식 쇼트피닝 머신에 의한 표면 커버리지 시뮬레이션)

  • Shin, Ki-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2014
  • Shot-peening is frequently used on various mechanical parts because it can improve the fatigue life of components by generating compressive residual stresses on the surface. This can be done by repeatedly hitting the work-piece surface with small balls and making indentations on it. In fact, finding optimal peening time among various peening parameters is the most important. Under-peening can not improve the fatigue life sufficiently while over-peening causes cracks and reduces fatigue life in contrast. In general, optimal peening time is experimentally determined by measuring arc-height using Almen-strip in accordance with SAE J442 standard. To save the time and efforts spent in carrying out experiments to find optimal peening time, this paper presents a computer simulation algorithm for the estimation of surface coverage made by impeller type shot-peening machines (PMI-0608). Surface coverage is defined as the proportion of the work-piece surface that has been indented in a given time of shot-peening. An example (standard tensile test specimen) is presented to validate the proposed method.

Artificial Neural Network for Stable Robotic Grasping (안정적 로봇 파지를 위한 인공신경망)

  • Kim, Kiseo;Kim, Dongeon;Park, Jinhyun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.94-103
    • /
    • 2019
  • The optimal grasping point of the object varies depending on the shape of the object, such as the weight, the material, the grasping contact with the robot hand, and the grasping force. In order to derive the optimal grasping points for each object by a three fingered robot hand, optimal point and posture have been derived based on the geometry of the object and the hand using the artificial neural network. The optimal grasping cost function has been derived by constructing the cost function based on the probability density function of the normal distribution. Considering the characteristics of the object and the robot hand, the optimum height and width have been set to grasp the object by the robot hand. The resultant force between the contact area of the robot finger and the object has been estimated from the grasping force of the robot finger and the gravitational force of the object. In addition to these, the geometrical and gravitational center points of the object have been considered in obtaining the optimum grasping position of the robot finger and the object using the artificial neural network. To show the effectiveness of the proposed algorithm, the friction cone for the stable grasping operation has been modeled through the grasping experiments.

Factors Affecting on Final Adult Height and Total Height Gain in Children with Idiopathic and Organic Growth Hormone Deficiency after Growth Hormone Treatment (특발성과 기질성 성장호르몬 결핍증 환아에서 성장호르몬 치료 후 최종 성인신장과 신장 증가에 영향을 미치는 인자)

  • Choi, Im Jeong;Hwang, Jin Soon;Shin, Choong Ho;Yang, Sei Won
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.803-810
    • /
    • 2003
  • Purpose : The purpose of this study was to evaluate the factors affecting the final adult height and total height gain in idiopathic and organic growth hormone deficient(GHD) children after growth hormone(GH) treatment. Methods : Thirteen patients with idiopathic GHD and 22 patients with organic GHD who had been treated with GH and attained adult final height were included in this study. Factors which could affect the final adult height(FAH) and total height gain, were evaluated. Results : Height SDS(standard deviation score) at initial GH treatment in idiopathic GHD was significantly shorter than that in organic GHD($-4.13{\pm}1.28$ vs $-1.66{\pm}1.06$, P<0.001). Growth velocity during the first year of GH treatment was $9.69{\pm}3.19cm$(idiopathic GHD) and $7.87{\pm}3.65cm$(organic GHD). Height(SDS) at puberty in organic GHD was significantly greater than in idiopathic GHD ($-0.55{\pm}1.25$ vs $-2.28{\pm}0.95$, P<0.001). Final adult height(SDS) was significantly greater in organic GHD than in idiopathic GHD($0.22{\pm}1.06$ vs $-1.44{\pm}0.84$, P<0.001). In idiopathic GHD, total height gain (SDS) was most significantly correlated with midparental height minus initial height(MPH-IH)(SDS) (r=0.886, P<0.001). Total height gain(SDS) was more significantly correlated with MPH-IH(SDS) and prepubertal height gain(SDS) in idiopathic GHD(r=0.640, P=0.01, r=0.801, P<0.001). Conclusion : Final adult height was greater in organic GHD than in idiopathic GHD patients. While total height gain(SDS) was more pronounced in children with lower initial height compared to MPH, absolute final adult height was influenced by height at puberty. To improve the final adult height in children with GHD, height at onset of puberty must be increased by early diagnosis and continuous treatment with optimal doses of GH. There results should be evaluated with more patients.

Effect of Tip Gap Height on Heat/Mass Transfer over a Cavity Squealer Tip (팁간극높이가 전면스퀼러팁 표면의 열전달 특성에 미치는 영향)

  • Kang, Dong Bum;Moon, Hyun Suk;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • The effect of tip gap height on heat/mass transfer characteristics on the floor of cavity squealer tip has been investigated in a turbine cascade for power generation by employing the naphthalene sublimation technique. The squealer rim height is chosen to be an optimal one of $h_{st}/c$ = 5.51% for the tip gap height-to-chord ratios of h/c = 1.0, 2.0, 3.0 and 4.0%. The results show that heat transfer on the cavity floor is strongly dependent upon the behavior of the cavity flow falling down onto the floor. For lower h/c, the floor heat transfer is influenced by the tip leakage flow falling down along the inner face of the suction-side squealer, whereas the floor heat transfer for higher h/c is augmented mainly due to the impingement of leakage flow on the floor near the leading edge. Compared to the plane tip surface heat transfer, the cavity floor heat transfer is less influenced by h/c. For h/c = 1.0%, the average thermal load is as low as a half of the plane tip surface one, and the difference in the thermal load between the two cases tends to decrease with increasing h/c.

Highly Dense 3D Surface Generation Using Multi-image Matching

  • Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.87-97
    • /
    • 2012
  • This study presents an automatic matching method for generating a dense, accurate, and discontinuity-preserved digital surface model (DSM) using multiple images acquired by an aerial digital frame camera. The proposed method consists of two main procedures: area-based multi-image matching (AMIM) and stereo-pair epipolar line matching (SELM). AMIM evaluates the sum of the normalized cross correlation of corresponding image points from multiple images to determine the optimal height of an object point. A novel method is introduced for determining the search height range and incremental height, which are necessary for the vertical line locus used in the AMIM. This procedure also includes the means to select the best reference and target images for each strip so that multi-image matching can resolve the common problem over occlusion areas. The SELM extracts densely positioned distinct points along epipolar lines from the multiple images and generates a discontinuity-preserved DSM using geometric and radiometric constraints. The matched points derived by the AMIM are used as anchor points between overlapped images to find conjugate distinct points using epipolar geometry. The performance of the proposed method was evaluated for several different test areas, including urban areas.

Optimum Design of Movable Hydraulic Crane Booms (이동식 크레인 붐의 최적설계)

  • Yoo, Kwang-Seon;Park, Jeong-Wan;Sinichi, Hidaka;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.776-781
    • /
    • 2010
  • Optimum design of movable hydraulic crane's booms for weight reduction was performed in this study. Since the boom weight of the present used booms is very heavy, it is needed to make them lighter structure as possible as we can. Optimum design was performed for the booms by changing from the hexagonal cross section to triangular truss structure under the conditions, which are the allowable stress for the present cross section must be maintained, and the optimized weight must be minimized. CATIAV5 was used for stress analysis and design variables were established as the height and width of the triangular truss structure. As the results, it is found that the height of the truss structure is increased in proportion to the height of the booms and the maximum stress for optimal truss structure was obtained as 412MPa, which is lower than the allowable stress for the present hexagonal cross section. The optimized weight of the booms is reduced to about 19.88% comparing to the original weight.