• Title/Summary/Keyword: Optimal Gap

Search Result 416, Processing Time 0.026 seconds

Response Surface Methodology based on the D-optimal Design for Cell Gap Characteristic for Flexible Liquid Crystal Display (D-optimal Design을 이용한 Flexible 액정 디스플레이용 셀 갭 특성에 대한 반응 표면 분석)

  • Ko, Young-Don;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.510-513
    • /
    • 2004
  • This paper represents the response surface model for the cell gap on the flexible liquid crystal display (LCD) process. Using response surface methodology (RSM). D-optimal design is carried out to build the design space and the cell gap is characterized by the quadratic model. The statistical analysis is used to verify the response surface model. This modeling technique can predict the characteristics of the desired response, cell gap, varying with process conditions.

  • PDF

Optimal Performance Characteristic of Axial Flux Motor by Controlling Air Gap (공극 제어에 의한 Axial Flux Motor의 최적 운전 특성)

  • 오성철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.535-540
    • /
    • 2003
  • Since axial flux motor has an advantage over more conventional radial flux type motor such as high power density, it can be used as a power train for hybrid electric vehicle and electric vehicle. Also operating range can be extended and efficiency can be improved by changing air gap. Optimal operating air gap is estimated based on the measured efficiency at different air gap. Motor model is developed based on estimated optimal air gap and efficiency. Motor/controller performance is analyzed through simulation. Possible application area of axial flux motor was explored through simulation.

Cold Acoustic Tests for the Elucidation of the Gap of Optimal Damping Capacity of Baffled Injectors in Liquid Rocket Combustors (로켓연소기에서 분사기형 배플의 간극에 따른 감쇠특성 파악을 위한 상온음향시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • Cold acoustic tests have been performed to elucidate the effect of baffle gaps on the optimal damping characteristics in a liquid rocket combustor where coaxial injectors are installed. For several axial baffle lengths, an optimal acoustic damping capacitance has been achieved in a certain gap range. Cold acoustic tests for simulating fluid viscosity by changing the pressure in a model chamber have been done to study the main mechanism of optimal damping. Experimental data have shown that the optimal gap for high damping capacity exists mainly due to the viscosity near the gap of baffles. Therefore, axial baffle length can be reduced by using the optimal baffle gap, providing a possible solution of thermal cooling problems. Also, these optimum characteristics can be some guidelines for manufacturing and assembling injectors in full-scaled rocket combustors.

Establishing optimal gap size for precast beam bridges with a buffer-gap-elastomeric bearings system

  • Farag, Mousa M.N.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.195-219
    • /
    • 2015
  • A partial (hybrid) seismic isolation scheme for precast girder bridges in the form of a "buffer-gap-elastomeric bearings" system has been endorsed in the literature as an efficient seismic design system. However, no guides exist to detail an optimal gap size for different configurations. A numerical study is established herein for different scenarios according to Euro code seismic requirements in order to develop guidelines for the selection of optimal buffer-gap arrangements for various design cases. Various schemes are hence designed for ductile and limited ductility behavior of the bridge piers for different seismic demand levels. Seven real ground records are selected to perform incremental dynamic analysis of the bridges up to failure. Bridges with typical short and high piers are studied; and different values of initial gaps at piers are also investigated varying from a zero gap (i.e., fully locked) condition up to an initial gap at piers that is three quarters the gap left at abutments. Among the main conclusions is that the as-built initial gaps at piers (and especially large gap sizes that are ${\geq}1/2$ as-built gaps at abutments) do not practically reduce the seismic design demand and do not affect the reserve capacity of the bridge against failure for bridges featuring long piers, especially when these bridges are designed a priori for ductile behavior. To the contrary, the "buffer-gap-elastomeric bearings" system is more effective for the bridge schemes with short piers having a large difference between the stiffness of the bearings and that of their supporting (much stiffer) squat piers, particularly for designs with limited ductility. Such effectiveness is even amplified for the case of larger initial as-built gap sizes at piers.

Air-Gap Control Using Optimal PID Controller for SIL-Based Near-Field Recording System (SIL 기반 근접장 기록 시스템의 간극 제어를 위한 최적화된 PID 제어 알고리즘 성능평가)

  • Shin, Won-Ho;Kim, Jung-Gon;Park, No-Cheol;Yang,, Hyun-Seok;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • In SIL-based NFR servo systems, the residual error and the overshoot that are occurred in the process of the modes-witching servo which consists of approach, gap-control modes, and safety mode are reduced by using PID controller. However, the design method of conventional PID controller is not sufficient for the stable air gap control system. Therefore, the optimal PID controller using LQR manner is more useful to find the designed parameters of PID controller. In this paper, we show that the performance of the optimal PID controller is better than that of the lead-lag controller.

  • PDF

Simulating Combustion Tests for the Verification of Baffle Gap of Optimal Damping Characteristics in Liquid Rocket Combustors (로켓연소기에서 최적의 감쇠특성을 보이는 분사기형 배플의 간극 검증을 위한 상압모사연소시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.179-185
    • /
    • 2008
  • Simulating combustion tests have been performed to elucidate the effect of baffle gaps on the optimal damping characteristics in liquid rocket combustors where coaxial injectors are installed. Amplitude of pressure oscillation in model combustion chamber and the combustion stability margin are used to quantify the damping capacitance of baffles. Satisfactory agreement has been achieved with the results of cold acoustic tests. Present results have shown that the optimal gap for high acoustic damping capacity has also the large combustion stability margin in simulating combustion tests. Therefore, the present results can be utilized to determine the baffle length and optimal gap in full-scaled rocket combustors.

Parametric Study on the Heat Loss of the Reactor Vessel in the Nuclear Power Plant (원자력 발전 원자로 용기의 열손실 설계인자에 관한 연구)

  • Jong-Ho Park;Seoug-Beom Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.827-836
    • /
    • 2004
  • The design parameter of the heat loss for the pressurized water reactor has been studied. The heat loss from the reactor vessel through the air gap. insulation are analysed by using the computational fluid dynamics code, FLUENT. Parametric study has been performed on the air gap width between the reactor vessel wall and the inner surface of the insulation, and on the insulation thickness. Also evaluated is the performance degradation due to the chimney effect due to gaps left between the panels during the installation of the insulation system. From the analysis results, the optimal with of air gap and insulation thickness and the value of heat loss are obtained The results show how the heat loss varies with the air gap width and insulation thickness. The temperature and the velocity distributions are also presented. From the results of the evaluation. the optimal air gap width and the optimal insulation thickness are obtained. As the difference between the predicted heat loss and measured heat loss from the reactor vessel is construed Primarily as losses due to chimney effect. the contribution of the chimney effect to the total heat loss is quantitatively indicated.

Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method

  • Ke, Qing;Zhang, Fan;Zhang, Yachi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.204-217
    • /
    • 2016
  • Modified poplar has emerged as a potential raw material for furniture production. Lack of specific modified poplar strength information; however, restricts applications in the furniture industry especially as related to strength in corner-joints. Optimization of strength in L-shaped corner dowel modified poplar joints under compression loads utilizing finite element analysis (FEA) by Taguchi method with the focus of this study. Four experiment factors (i.e., Structure Style, Tenon Length, Tenon Diameter, and Tenon Gap), each at three levels, were conducted by adopting a $L_9-3^4$ Taguchi orthodoxy array (OA) to determine the optimal combination of factors and levels for the von Mises stress utilizing ANSYS software. Results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed the optimal L-shaped corner dowel joint in modified poplar is $45^{\circ}$ Bevel Butt in structure style, 24 mm in tenon length, 6 mm in tenon diameter, and 20 mm in tenon gap. Tenon length and tenon gap are determined to be significant design factors for affecting von Mises Stress. Confirmation tests with optimal levels and experimental test indicated the predicted optimal condition is comparable to the actual experimental optimal condition.

Optimal Acceleration Feedforward Control of Active Magnetic Bearing Systems Subject To Base Motion (베이스 운동을 받는 능동자기베어링계의 가속도 최적 앞먹임 제어)

  • 강민식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.84-91
    • /
    • 2003
  • This paper concerns on one-DOF non-rotating active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap while the base motion forces the axis to deviate from the desired air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed optimal feedforward control reduces the standard deviation of the air-gap to 29% that by feedback control alone.

Approximate Multi-Objective Optimization of Gap Size of PWR Annular Nuclear Fuels (가압경수로용 환형 핵연료의 간극 크기 다중목적 근사최적설계)

  • Doh, Jaehyeok;Kwon, Young Doo;Lee, Jongsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.815-824
    • /
    • 2015
  • In this study, we conducted the approximate multi-objective optimization of gap sizes of pressurized-water reactor (PWR) annular fuels. To determine the contacting tendency of the inner-outer gaps between the annular fuel pellets and cladding, thermoelastic-plastic-creep (TEPC)analysis of PWR annular fuels was performed, using in-house FE code. For the efficient heat transfer at certain levels of stress, we investigated the tensile, compressive hoop stress and temperature, and optimized the gap sizes using the non-dominant sorting genetic algorithm (NSGA-II). For this, response surface models of objective and constraint functions were generated, using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by NSGA-II were verified through the TEPC analysis, and we compared the obtained optimum solutions and generated errors from the CCD and D-optimal design. We observed that optimum solutions differ, according to design of experiments (DOE) method.