• Title/Summary/Keyword: Optimal Design Parameters

Search Result 1,819, Processing Time 0.033 seconds

Rotational inertial double tuned mass damper for human-induced floor vibration control

  • Wang, Pengcheng;Chen, Jun;Han, Ziping
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.283-294
    • /
    • 2022
  • An inerter is a passive mechanical element whose inertance can be thousands of times its own physical mass. This paper discusses the application of an inerter-based passive control system, termed rotational inertial double-tuned mass damper (RIDTMD), to mitigate human-induced floor vibrations. First, the acceleration frequency response function of the floor with an RIDTMD is first derived. It is then employed to determine the optimal design parameters of the RIDTMD using the extended fixed-points technique. Based on a theoretical analysis, design-oriented empirical functions are proposed for the RIDTMD optimal parameters, whose performance for floor vibration control is evaluated by numerical examples, in which three typical human-induced load types are considered: walking, jumping, and bouncing. The results indicate that the applicability and effectiveness of the RIDTMD for human-induced floor vibration control are robust for various load types, load frequencies, and floor natural frequencies. For the same mass ratio, the RIDTMD is better than the TMD in reducing the floor vibration amplitude and improving the effective frequency suppression bandwidth, and for the same vibration suppression effect, the mass of the RIDTMD is much lighter than that of the TMD.

Effect of Process Parameters on Microhardness of Ni-Al2O3 Composite Coatings (Ni-Al2O3 복합코팅의 마이크로 경도에 대한 공정변수의 영향)

  • Jin, Yeung-Jun;Park, Simon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1037-1045
    • /
    • 2022
  • In this study, nanoscale Al2O3 ceramic particles were used due its exceptionally high hardness characteristics, chemical stability, and wear resistance properties. These nanoparticles will be used to investigate the optimal process conditions for the electro co-deposition of the Ni-Al2O3 composite coatings. A Watts bath electrolytic solution of a controlled composition along with a fixed agitation speed was used for this study. Whereas the current density, the pH value, temperature and concentration of the nano Al2O3 particles of the electrolyte were designated as the manipulative variables. The experimental design method was based on the orthogonal array to find the optimum processing parameters for the electro co-deposition of Ni-Al2O3 composite coatings. The result of confirmation experimental based on the optimal processing condition through the analysis of variance ; EDX analysis found that the ratio of alumina increased to 8.65 wt.% and subsequently the overall hardness increased to 983 Hv. Specially, alumina were evenly distributed on Nickel matrix and particles were embedded more firmly and finely in Nickel matrix.

Optimal Design for Seismically Isolated Bridges with Frictional Bearings (마찰받침이 있는 지진격리교량의 최적설계)

  • Lee, Gye-Hee;You, Sang-Bae;Ha, Dong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.399-406
    • /
    • 2010
  • In this paper, the optimization of frictional bearings that applied to improve the seismic performance of conventional bridges were conducted. The nonlinear dynamic analysis of steel bridges and concrete bridges are carried out with the El Centro and artificial earthquake motions, and the reponses of the bridges were optimized by genetic algorithm. The object functions were considered with two parameters, such as shear forces and displacements at bearing, and the optimum object functions were searched by varying the weighting factors of the two parameters. As results, in case of the steel bridges, the optimum results were obtained when larger weight factor was imposed to the shear force. However, in case of concrete bridges, larger weight factor was need to the displacement for optimum results.

Design and Verification of the Hydrostatic Bearing for Hydraulic Model Turbine (I) - Radial Bearing - (모델수차 성능시험용 정압베어링 설계해석 및 검증(I) - 레이디얼 베어링 -)

  • Park, Moo Ryong;Kim, Byung Ok;Yoon, Eui Soo;Hwang, Soon Chan;Cho, Yong;Park, No Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.35-41
    • /
    • 2016
  • This paper deals with the design, manufacturing and test evaluation of a hydrostatic bearing applied to a hydraulic model turbine. The design parameters of a hydrostatic bearing, considering machining and assembly tolerances, and recommended values of design parameters are presented. Also the simple design procedure of a hydrostatic bearing by utilizing the reference results is proposed. In order to illustrate the utility and validity of the proposed design procedure, two hydrostatic bearings are manufactured and test evaluation of these bearings are performed. In results, the proposed design procedure can be utilized as an effective tool at the initial design screen of a hydrostatic bearing. However, the 2D bearing governing equation should be solved to obtain the optimal design of a hydrostatic bearing.

Game Optimal Receding Horizon Guidance Laws and Its Equivalence to Receding Horizon Guidance Laws

  • Park, Jae-Weon;Kim, Ki-Baek
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.770-775
    • /
    • 2002
  • In this paper, a game optimal receding horizon guidance law (GRHG) is proposed, which does not use information of the time-to-go and target maneuvers. It is shown that by adjusting design parameters appropriately, the proposed GRHG is identical to the existing receding horizon guidance law (RHG), which can intercept the target by keeping the relative vertical separation less than the given value, within which the warhead of the missile is detonated, after the appropriately selected time in the presence of arbitrary target maneuvers and initial relative vertical separation rates between the target and missile. Through a simulation study, the performance of the GRHG is illustrated and compared with that of the existing optimal guidance law (OGL).

Numerical Study for Plastic Injection Molding Process Using CAE (CAE를 이용한 플라스틱 사출 금형 제품 개발)

  • Kwon C. O.;Yang C. H.;Lee J. H.;Kim K. H.;Song D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.61-67
    • /
    • 2002
  • The present work is investigated optimal design for the injection molding process of a hand brake cover. The viscoelastic flow through a hand brake cover shape in the mold were calculated and compared with the experimental data. Numerical analysis reasonably predicted the general performance i.e hold pressure, cooling time and hold pressure time. In order to determine optimal process parameters, Numerical analysis and experiments have been performed for various process conditions. In this study, we obtained to increase in the productivity by $160\%$ by optimal process conditions.

  • PDF

Air-Gap Control Using Optimal PID Controller for SIL-Based Near-Field Recording System (SIL 기반 근접장 기록 시스템의 간극 제어를 위한 최적화된 PID 제어 알고리즘 성능평가)

  • Shin, Won-Ho;Kim, Jung-Gon;Park, No-Cheol;Yang,, Hyun-Seok;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • In SIL-based NFR servo systems, the residual error and the overshoot that are occurred in the process of the modes-witching servo which consists of approach, gap-control modes, and safety mode are reduced by using PID controller. However, the design method of conventional PID controller is not sufficient for the stable air gap control system. Therefore, the optimal PID controller using LQR manner is more useful to find the designed parameters of PID controller. In this paper, we show that the performance of the optimal PID controller is better than that of the lead-lag controller.

  • PDF

A Comparison of Parameter Design Methods for Multiple Performance Characteristics (다특성 파라미터설계 방법의 비교 연구)

  • Soh, Woo-Jin;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.198-207
    • /
    • 2012
  • In product or process parameter design, the case of multiple performance characteristics appears more commonly than that of a single characteristic. Numerous methods have been developed to deal with such multi-characteristic parameter design (MCPD) problems. Among these, this paper considers three representative methods, which are respectively based on the desirability function (DF), grey relational analysis (GRA), and principal component analysis (PCA). These three methods are then used to solve the MCPD problems in ten case studies reported in the literature. The performance of each method is evaluated for various combinations of its algorithmic parameters and alternatives. Relative performances of the three methods are then compared in terms of the significance of a design parameter and the overall performance value corresponding to the compromise optimal design condition identified by each method. Although no method is significantly inferior to others for the data sets considered, the GRA-based and PCA-based methods perform slightly better than the DF-based method. Besides, for the PCA-based method, the compromise optimal design condition depends much on which alternative is adopted while, for the GRA-based method, it is almost independent of the algorithmic parameter, and therefore, the difficulty involved in selecting an appropriate algorithmic parameter value can be alleviated.

A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance (차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

MOTION DESIGN OPTIMIZATION OF AUV DOUBLE HYDROFOIL FOR IMPROVEMENT OF THRUST AND EFFICIENCY (추력과 효율 향상을 위한 AUV Double Hydrofoil의 모션 최적설계)

  • So, H.K.;Jo, T.H.;Lee, Y.H.;Kim, J.S.;Han, J.H.;Koo, B.C.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2016
  • While most AUV researches have concerned about single hydrofoil, practical AUV's are generally operated with multiple hydrofoils. Double hydrofoil study attempts to evaluate thrust and efficiency with various flapping motions, and carries out design optimization using parametric analysis. Flow patterns such as vortex shedding and wake-body interaction are carefully investigated during design variable sensitivity analysis. The purpose of this design optimization is to find out the optimal motion that yields maximum thrust and efficiency. The design optimization employes several techniques such as table of orthogonal arrays, Kriging method, ANOVA analysis and MGA. Throughout this research, it is possible to find the optimal values of heaving ratio, heaving shift and pitch shift: Heaving ratio 0.950, heaving shift $23.120^{\circ}$ and pitch shift $89.991^{\circ}$ are found to be optimal values in double hydrofoil motions. Thrust and efficiency are 16.7% and 35.1% higher than existing AUV that did not consider nonlinear dependency of motion parameters. This results may offer an effective framework that is applicable to various AUV motion analyses and designs.