• Title/Summary/Keyword: Optimal Design Parameter

Search Result 756, Processing Time 0.025 seconds

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.

Study on Structural Performance by Shape Parameter Variation of Bellows for the Hydrogen Compressor-embedded Refueling Tank (수소압축기 내장 충전탱크용 벨로우즈의 형상 파라미터 변화에 따른 구조 성능 고찰)

  • WOO CHANG PARK;MIN SEOK CHEONG;CHANG YONG SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, design parameter exploration based on finite element analysis was performed to find the optimal shape of bellows, the key component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 900 bar. In the design parametric study, the design variables took into account the bellows shapes such as contour radius and span spacing, and the response factors were set to the maximum stress and the gap in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour span is an appropriate design method to improve the compression performance and structural safety. From the selection of optimal design, the maximum stress was reduced to 49% compared to the initial design without exceeding the material yield stress.

A Study on Design of Optimal Satellite-Tracking Antenna $H{\infty}$ Control System (최적 위성추적 안테나 $H{\infty}$ 제어 시스템의 설계에 관한 연구)

  • Kim, Dong-Wan;Jeong, Ho-Seong;Hwang, Hyun-Joon
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.19-30
    • /
    • 1997
  • In this paper we design the optimal satellite-tracking antenna $H{\infty}$ control system using genetic algorithms. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithms with reference model to the optimal determination of weighting functions and design parameter ${\gamma}$ that are given by Glover-Doyle algorithm which can design $H{\infty}$ controller in the state space. These weighting functions and design parameter ${\gamma}$ are optimized simultaneously in the search domain guaranteeing the robust stability of closed-loop system. The effectiveness of this satellite-tracking antenna $H{\infty}$ control system is verified by computer simulation.

  • PDF

The Design of IMC-PID Controller Considering a Phase Scaling Factor (위상 조절 인자를 고려한 IMC-PID 제어기의 설계)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1618-1623
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain and phase margins, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

Optimal Design and Characteristic Analysis of BLDC using GA (유전알고리즘을 이용한 BLDC전동기의 최적설계 및 특성해석)

  • Park, Young-Il;Youn, Sun-Ky;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.15-17
    • /
    • 1999
  • This paper proposes that optimal design using GA of BLDC motor. To estimate this optimal design method, the performance characteristics of BLDC motor is computed by the equivalent magnetic circuit network method and FEM. To estimate especially the dynamic characteristics of BLDC, we compute the parameter of electrical circuit using FEM.

  • PDF

The Study for Optimal Design of Spindle Insert used in Cotton Spinning Machine (방적기계용 스핀들 인서트의 최적설계 관한 연구)

  • Lee, Dong-Woo;Huh, Sun-Chul;Lee, Sang-Suk;Shim, Jae-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.72-78
    • /
    • 2010
  • Textile machinery affects various industry, such as sport leisure industry, metal and chemistry material, electric electron, mechanical energy, packing and printing industry. In case of design of textile machine, the very important fact is absorbing the minute vibration induced by spinning thread and insert which is the part of spindle plays a role of reduction of impact caused by oscillation of thread bobbin. Therefore, Optimal design was executed by design of experiments and kriging optimal design methods to prevent fracture of spindle insert under the fatigue condition and deduced the best value of design parameter to improve the stability of the products. The highest sensitivity is showed at the design parameter A and D. As the spiral number of insert is increase, tension force applied its edge is distributed at whole model and the stress concentration is reduced.

Optimal Design of Lognormal Accelerated Life Tests with Nonconstant Scale Parameter (스트레스에 의존하는 척도모수를 가진 대수정규 가속수명시험의 최적설계)

  • Park, Byung-Gu;Yoon, Sang-Chul;Seo, Ho-Cheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.47-57
    • /
    • 1996
  • This paper on planning constant accelerated life test is assumed that parameters for a lognormal life distribution are depended on changes of stresses. The proposed test plans are optimum in that they minimize the asymptotic variance of maximum likelihood estimator of a specified quantile at the design stress. The optimal amount of low stress level ${\xi}_{L}$ and optimal sample proportion ${\pi}$ to be allocated at low stress level are obtained when the ratio of scales at high stress level and design stress level is unknown.

  • PDF

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

Study on Thermal Characteristics of IGBT (IGBT의 열 특성에 관한 연구)

  • Kang, Ey-Goo;Ahn, Byoung-Sub;Nam, Tae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.70-70
    • /
    • 2009
  • In this paper, we proposed 2500V Non punch-through(NPT) Insulated gate bipolar transistor(IGBT) for high voltage industry application. we carried out optimal simulation for high efficiency of 2500V NPT IGBT according to size of device. In results, we obtaind design parameter with 375um n-drift thickness, 15um gate length, and 8um emitter windows. After we simulate with optimal parameter, we obtained 2840V breakdown voltage and 3.4V Vce,sat. These design and process parameter will be used designing of more 2000V NPT IGBT devices.

  • PDF

서브마이크론 MOSFET의 파라메터 추출 및 소자 특성 (1)

  • 서용진;장의구
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.107-116
    • /
    • 1994
  • In the manufacturing of VLSI circuits, variations of device characteristics due to the slight differences in process parameters drastically aggravate the performances of fabricated devices. Therefore, it is very important to establish optimal process conditions in order to minimize deviations of device characteristics. In this paper, we used one-dimensional process simulator, SUPREM-II, and two dimensional device simulator, MINIMOS 4.0 in order to extract optimal process parameter which can minimize changes of the device characteristics caused by process parameter variation in the case of short channel nMOSFET and pMOSFET device. From this simulation, we have derived the dependence relations between process parameters and device characteristics. Here, we have suggested a method to extract process parameters from design trend curve(DTC) obtained by these dependence relations. And we have discussed short channel effects and device limitations by scaling down MOSFET dimensions.

  • PDF