• Title/Summary/Keyword: Optimal Clustering

Search Result 367, Processing Time 0.023 seconds

Models of State Clusterisation Management, Marketing and Labour Market Management in Conditions of Globalization, Risk of Bankruptcy and Services Market Development

  • Prokopenko, Oleksii;Martyn, Olga;Bilyk, Olha;Vivcharuk, Olga;Zos-Kior, Mykola;Hnatenko, Iryna
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.228-234
    • /
    • 2021
  • The article defines the problems of forming the models of government regulation of clustering, marketing management and labor market in the context of globalization, business bankruptcy risk and services market development. The clustering models based on the optimal partner network cooperation were proposed in order to ensure the strategic development of territories, to attract budget leading enterprises and to support small businesses. A descriptive model of government regulation of clustering, marketing management and labor market in the context of globalization, business bankruptcy risk and Covid-19 was determined.

A Fast K-means and Fuzzy-c-means Algorithms using Adaptively Initialization (적응적인 초기치 설정을 이용한 Fast K-means 및 Frizzy-c-means 알고리즘)

  • 강지혜;김성수
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.516-524
    • /
    • 2004
  • In this paper, the initial value problem in clustering using K-means or Fuzzy-c-means is considered to reduce the number of iterations. Conventionally the initial values in clustering using K-means or Fuzzy-c-means are chosen randomly, which sometimes brings the results that the process of clustering converges to undesired center points. The choice of intial value has been one of the well-known subjects to be solved. The system of clustering using K-means or Fuzzy-c-means is sensitive to the choice of intial values. As an approach to the problem, the uniform partitioning method is employed to extract the optimal initial point for each clustering of data. Experimental results are presented to demonstrate the superiority of the proposed method, which reduces the number of iterations for the central points of clustering groups.

Coupling Particles Swarm Optimization for Multimodal Electromagnetic Problems

  • Pham, Minh-Trien;Song, Min-Ho;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.423-430
    • /
    • 2010
  • Particle swarm optimization (PSO) algorithm is designed to find a single global optimal point. However, the PSO needs to be modified in order to find multiple optimal points of a multimodal function. These modifications usually divide a swarm of particles into multiple subswarms; in turn, these subswarms try to find their own optimal point, resulting in multiple optimal points. In this work, we present a new PSO algorithm, called coupling PSO to find multiple optimal points of a multimodal function based on coupling particles. In the coupling PSO, each main particle may generate a new particle to form a couple, after which the couple searches its own optimal point using non-stop-moving PSO algorithm. We tested the suggested algorithm and other ones, such as clustering PSO and niche PSO, over three analytic functions. The coupling PSO algorithm was also applied to solve a significant benchmark problem, the TEAM workshop problem 22.

An Energy Saving Method Using Cluster Group Model in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 그룹 모델을 이용한 에너지 절약 방안)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4991-4996
    • /
    • 2010
  • Clustering method in wireless sensor network is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. Even though cluster group model is based on clustering, it differs from previous method that reducing the total energy consumption by separating energy overload to cluster group head and cluster head. In this thesis, I calculate the optimal cluster group number and cluster number in this kind of cluster group model according to threshold of energy consumption model. By using that I can minimize the total energy consumption in sensor network and maximize the network lifetime. I also show that proposed cluster group model is better than previous clustering method at the point of network energy efficiency.

Retail Outlet Clustering of the Imported Automobile Distributors in Korea

  • Park, Koo-Woong
    • Journal of Distribution Science
    • /
    • v.16 no.5
    • /
    • pp.45-59
    • /
    • 2018
  • Purpose - This paper aims to analyze the distinct pattern of clustering of imported automobile distributors and provide evidence for the phenomenon using Korean data. Research design, data, and methodology - In this paper, we use data from Korea Automobile Importers & Distributors Association of 23 foreign automobile brands to evaluate the degree of concentration of showrooms using locational Gini index. We identify possible causes for the high level of clustering from two perspectives; 1) on the distributors' side and 2) on the customers' side. Results - We find a very strong locational concentration of imported automobile showrooms within close vicinity in the major cities and districts in Korea. Locational Gini coefficients are 0.1024 at the national level, 0.1836~0.3763 at city level, and 0.3941~0.4311 at district level on a [0,0.5] scale. Conclusions - Luxury foreign automobile customers tend to shop extensively around multiple brands prior to their ideal model selection. Accordingly, the imported automobile distributors cluster together close to their direct competitors in order to give a good comparison opportunity for the potential customers. This will maximize the probability of the visits of potential customers and lead to successful sales performance.

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Improved TI-FCM Clustering Algorithm in Big Data (빅데이터에서 개선된 TI-FCM 클러스터링 알고리즘)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.419-424
    • /
    • 2019
  • The FCM algorithm finds the optimal solution through iterative optimization technique. In particular, there is a difference in execution time depending on the initial center of clustering, the location of noise, the location and number of crowded densities. However, this method gradually updates the center point, and the center of the initial cluster is shifted to one side. In this paper, we propose a TI-FCM(Triangular Inequality-Fuzzy C-Means) clustering algorithm that determines the cluster center density by maximizing the distance between clusters using triangular inequality. The proposed method is an effective method to converge to real clusters compared to FCM even in large data sets. Experiments show that execution time is reduced compared to existing FCM.

Opera Clustering: K-means on librettos datasets

  • Jeong, Harim;Yoo, Joo Hun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.

Decision Support System for Mongolian Portfolio Selection

  • Bukhsuren, Enkhtuul;Sambuu, Uyanga;Namsrai, Oyun-Erdene;Namsrai, Batnasan;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.637-649
    • /
    • 2022
  • Investors aim to increase their profitability by investing in the stock market. An adroit strategy for minimizing related risk lies through diversifying portfolio operationalization. In this paper, we propose a six-step stocks portfolio selection model. This model is based on data mining clustering techniques that reflect the ensuing impact of the political, economic, legal, and corporate governance in Mongolia. As a dataset, we have selected stock exchange trading price, financial statements, and operational reports of top-20 highly capitalized stocks that were traded at the Mongolian Stock Exchange from 2013 to 2017. In order to cluster the stock returns and risks, we have used k-means clustering techniques. We have combined both k-means clustering with Markowitz's portfolio theory to create an optimal and efficient portfolio. We constructed an efficient frontier, creating 15 portfolios, and computed the weight of stocks in each portfolio. From these portfolio options, the investor is given a choice to choose any one option.

Centralized Clustering Routing Based on Improved Sine Cosine Algorithm and Energy Balance in WSNs

  • Xiaoling, Guo;Xinghua, Sun;Ling, Li;Renjie, Wu;Meng, Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.17-32
    • /
    • 2023
  • Centralized hierarchical routing protocols are often used to solve the problems of uneven energy consumption and short network life in wireless sensor networks (WSNs). Clustering and cluster head election have become the focuses of WSNs. In this paper, an energy balanced clustering routing algorithm optimized by sine cosine algorithm (SCA) is proposed. Firstly, optimal cluster head number per round is determined according to surviving node, and the candidate cluster head set is formed by selecting high-energy node. Secondly, a random population with a certain scale is constructed to represent a group of cluster head selection scheme, and fitness function is designed according to inter-cluster distance. Thirdly, the SCA algorithm is improved by using monotone decreasing convex function, and then a certain number of iterations are carried out to select a group of individuals with the minimum fitness function value. From simulation experiments, the process from the first death node to 80% only needs about 30 rounds. This improved algorithm balances the energy consumption among nodes and avoids premature death of some nodes. And it greatly improves the energy utilization and extends the effective life of the whole network.