• Title/Summary/Keyword: Optimal Allocation

Search Result 846, Processing Time 0.027 seconds

Study on Power Allocation for Heterogeneous Networks Based on Asynchronous TDD (비동기식 TDD 기반의 이종 네트워크를 위한 전력 할당 방식 연구)

  • Min, Kyungsik;Kim, Taehyoung;Park, Sangjoon;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.664-673
    • /
    • 2014
  • This paper analyzes the power allocation scheme to maximize the sum-rate for heterogeneous networks based on asynchronous time division duplex. We consider heterogeneous networks where a small cell exists in the macro cell coverage and the small cell and the macro cell share the same time-frequency resources. We formulate the optimization problem which maximizes the sum-rate of the heterogeneous network subject to the target signal-to-interference-plus-noise ratio. We analyze the feasible region in order for the optimal solution to exists and the optimal power allocation scheme for maximizing the sum-rate. Simulation results show that the proposed power allocation schemes outperform the maximum power transmission scheme.

Energy-Efficiency of Distributed Antenna Systems Relying on Resource Allocation

  • Huang, Xiaoge;Zhang, Dongyu;Dai, Weipeng;Tang, She
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1325-1344
    • /
    • 2019
  • Recently, to satisfy mobile users' increasing data transmission requirement, energy efficiency (EE) resource allocation in distributed antenna systems (DASs) has become a hot topic. In this paper, we aim to maximize EE in DASs subject to constraints of the minimum data rate requirement and the maximum transmission power of distributed antenna units (DAUs) with different density distributions. Virtual cell is defined as DAUs selected by the same user equipment (UE) and the size of virtual cells is dependent on the number of subcarriers and the transmission power. Specifically, the selection rule of DAUs is depended on different scenarios. We develop two scenarios based on the density of DAUs, namely, the sparse scenario and the dense scenario. In the sparse scenario, each DAU can only be selected by one UE to avoid co-channel interference. In order to make the original non-convex optimization problem tractable, we transform it into an equivalent fractional programming and solve by the following two sub-problems: optimal subcarrier allocation to find suitable DAUs; optimal power allocation for each subcarrier. Moreover, in the dense scenario, we consider UEs could access the same channel and generate co-channel interference. The optimization problem could be transformed into a convex form based on interference upper bound and fractional programming. In addition, an energy-efficient DAU selection scheme based on the large scale fading is developed to maximize EE. Finally, simulation results demonstrate the effectiveness of the proposed algorithm for both sparse and dense scenarios.

An Efficient Channel Selection and Power Allocation Scheme for TVWS based on Interference Analysis in Smart Metering Infrastructure

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.50-64
    • /
    • 2016
  • Nowadays, smart meter (SM) technology is widely effectively used. In addition, power allocation (PA) and channel selection (CS) are considered problems with many proposed approaches. In this paper, we will suggest a specific scenario for an SM configuration system and show how to solve the optimization problem for transmission between SMs and the data concentrator unit (DCU), the center that collects the data from several SMs, via simulation. An efficient CS with PA scheme is proposed in the TV white space system, which uses the TV band spectrum. On the basic of the optimal configuration requirements, SMs can have a transmission schedule and channel selection to obtain the optimal efficiency of using spectrum resources when transmitting data to the DCU. The optimal goals discussed in this paper are the maximum capacity or maximum channel efficiency and the maximum allowable power of the SMs used to satisfy the quality of service without harm to another wireless system. In addition, minimization of the interference to the digital television system and other SMs is also important and needs to be considered when the solving coexistence scenario. Further, we propose a process that performs an interference analysis scheme by using the spectrum engineering advanced Monte Carlo analysis tool (SEAMCAT), which is an integrated software tool based on a Monte-Carlo simulation method. Briefly, the process is as follows: The optimization process implemented by genetic evolution optimization engines, i.e., a genetic algorithm, will calculate the best configuration for the SM system on the basis of the interference limitation for each SM by SEAMCAT in a specific configuration, which reaches the solution with the best defined optimal goal satisfaction.

Optimized Module Design for Berth Planning of Logistics Information System Using Tabu Search Algorithm (타부탐색을 이용한 물류정보시스템의 선석계획 최적화 모듈 설계)

  • Hong, Dong-Hee;Kim, Chang-Gon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.63-70
    • /
    • 2004
  • Port operation is largely divided into gate operation, yard operation and berth operation. Operation strategy and optimal resource allocation for three parts are important in the productivity of the port operation.. Especially the resource allocation planning in berth operation needs optimization, because it is directly connected with the processing time in shipping. Berth planning is not independent on recourse allocation but interrelated with yard stacking area allocation. Therefore, we design the optimized module of berth planning and give priority to interrelationship with yard space allocation, while existing studies design independent resource allocation in berth planning. We suggest constraints by mathematical method, and they are related to yard stacking area allocation with existing constraints. Then we look for solutions, use tabu search to optimize them, and design optimized the berth planning module. In the performance test of optimized module design of berth planning, we find that the berth planning with yard stacking area allocation takes less processing time than without yard stacking area allocation.

Optimal Allocation of Shunt Capacitor-Reactor Bank in Distribution System with Dispersed Generators Considering Installation and Maintenance Cost (분산전원을 포함한 배전계통에서 설치비용과 유지보수 비용을 고려한 병렬 캐패시터-리액터 Bank의 최적 설치 위치 선정)

  • Heo, Jae-Haeng;Lyu, Jae-Kun;Lee, Woo-Ri;Park, Jong-Young;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1511-1519
    • /
    • 2013
  • This paper proposes the allocation method for capacitor-reactor banks in a distribution system with dispersed generators to reduce the installation costs, the maintenance costs and minimize the loss of electrical energy. The expected lifetime and maintenance period of devices with moving parts depends on the total number of operations, which affects the replacement and maintenance period for aging equipment under a limited budget. In this paper, the expected device lifetimes and the maintenance period are included in the formulation, and the optimal operation status of the devices is determined using a genetic algorithm. The optimal numbers and locations for capacitor-reactor banks are determined based on the optimal operation status. Simulation results in a 69-bus distribution system with the dispersed generator show that the proposed technique performs better than conventional methods.

Optimal Introductive Sequence of Hedge Fund Baskets in the Korean Market (한국 헤지펀드 시장의 최적의 투자전략 도입순서에 대한 연구)

  • Kwon, Do-Gyun;Park, Hee Hwan;Kang, Dong Hun;Kim, Min Jeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.254-257
    • /
    • 2012
  • Hedge funds can be established in Korea after the deregulation about setting up private equity funds on September, 2011. Although the variety of asset allocation strategies is the strength of hedge funds, most of Korean hedge funds uses only the equity long/short strategy. Therefore, it is need to introduce other strategies into Korea hedge funds, however all strategies can not be adopted at once because of the infrastructure of Korea financial market. In this paper, we find the optimal introductive order of strategies for Korea hedge fund in view of individual or institutional investors. For this analysis, HFRI data are used for the historical return of each hedge fund strategy and three methods (network visualization, principle component analysis and efficient frontier optimization) are used for finding the optimal order.

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.

Estimation of Economic Benefits Based on Appropriate Allocation of Emergency Medical Beds by Region in South Korea (지역별 응급의료병상 적정 분배에 따른 경제적 편익 추정)

  • Jeong Min Yang;Min Soo Kim;Jae Hyun Kim
    • Health Policy and Management
    • /
    • v.34 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • Background: This study aimed to assess the appropriate allocation of emergency medical beds across 17 provinces and presume the economic benefits associated with such allocation. Methods: To estimate the optimal allocation of emergency medical beds by province, data from the Statistics Korea's "cause of death statistics (2014-2021)," regional statistics on "area, population, gender, age," and "population projections" were utilized. The "number of emergency beds by city and district" provided by the Health Insurance Review and Assessment Service was also used. In estimating the economic benefits of preventing avoidable emergency deaths due to the expansion of emergency medical facilities, guidelines from the Korea Development Institute and the Korea Transport Institute were referenced to calculate the wage loss costs associated with emergency deaths and estimate the economic benefits. Results: The optimal ratio of emergency medical beds allocation by region was highest in Gyeonggi, Seoul, Gyeongnam, Gyeongbuk, and Busan, while Daejeon, Jeju, and Sejong showed lower ratios. Additionally, the prevention of avoidable deaths and economic benefits resulting from the increase in emergency medical facilities were highest in Gyeonggi, Seoul, Gyeongbuk, Gyeongnam, and Busan. However, when standardized by population, the prevention of avoidable deaths and economic benefits were analyzed to be highest in Gyeongbuk, Chungnam, Jeonnam, Gyeongnam, and Busan. Conclusion: The results of this study can serve as foundational data for future policy measures aimed at addressing the imbalance in the supply of emergency medical facilities across regions. Considering regional characteristics in the distribution of emergency medical facilities is expected to ultimately increase the efficiency of national finances and yield economic benefits.

A New Cost Calculation Scheme for the Service Allocation to Transponders in the Satellite Communication Systems (위성통신 서비스별 중계기 할당을 위한 cost 설정 방법)

  • 고성찬;박세경;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.196-205
    • /
    • 1996
  • Severice allocation to satellite transponders under consideration of interference caused by inter-satellite and intra-satellite systems is one of the most important issue in terms of optimal usage of satellite network resource. In this paper, we present a new and show several simulation results to verify the proposed method. Especially, our concerns are concentrated on the cost (interference) matrix which is believed to be optimal in obtaining the service allocation plan. The method and concepts presented in this paper may be well applicable to making a plan for service assignment of the satellite communication systems.

  • PDF

Optimal Power and Spectrum Allocation Scheme in Multicell WRAN (Multicell WRAN에서의 최적 전력 및 주파수 할당 기법)

  • Hwang, In-Kwan;Lim, Yeon-Jun;Cho, Hae-Keun;Song, Myoung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.666-675
    • /
    • 2008
  • The IEEE 802.22 standard is being developed with the target of improving the efficiency of spectrum utilization and importing the new wireless communication service. The WRAN standard based on Cognitive Radio is being processed for sharing TV bands. In this paper, the efficient spectrum allocation scheme and the optimal power allocation scheme, Partial Constant Power Water Filling (PCPWF), are proposed to maximize the channel capacity and spectrum efficiency and minimize the interference between adjacent cells. And we maximize the system throughput and fairness by using proposed dynamic cell plan that efficiently allocates channel. The results of the simulations are presented to verify the utilization of our proposed scheme.