• Title/Summary/Keyword: Optical wireless

Search Result 290, Processing Time 0.03 seconds

Optical Wireless Access Point Agent Networks

  • Lee, Tae-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This paper proposes an optical wireless transfer agent method which realizes the continuous and swift data transfer of optical wireless terminals in optical wireless networks. The unguided wireless channel generally shows frequent link disconnections and propagation delays due to weak wireless links. Specially speaking, optical wireless channels have more vulnerable links and roaming propagation delays relative to the weakness of the previous RF channels due to their low signal connectivity and small geographic coverage. Conventional optical wireless network protocols did not consider any fault models about physical link faults. Consequently, they have shown data transfer inefficiency for both data link control and physical wireless link control. To overcome these optical wireless environmental problems, this paper suggests a new wireless access point (or base station) agent system, which provides wireless or mobile clients with previous link layer protocols compensated.

Transfer Efficiency of Underwater Optical Wireless Power Transmission Depending on the Operating Wavelength

  • Kim, Sung-Man;Kwon, Dongyoon
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.571-575
    • /
    • 2020
  • Optical wireless power transmission (OWPT) is a good candidate for long-distance underwater wireless power transmission. In this work we investigate the transmission efficiency of underwater OWPT, depending on the operating wavelength. We consider four operating wavelengths: infrared, red, green, and blue. We also consider the cases of pure water and sea water for the working conditions. Our results show that it is necessary to select the operating wavelength of underwater OWPT according to the transmission distance and water type of the target application.

Simultaneous Transmission of Optical Wireless Power Transfer and Optical Wireless Communication using a Laser Diode (레이저 기반의 광 무선충전 및 광 무선통신의 동시전송)

  • Shin, Jae-Woo;Yun, Tae-Uk;Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.605-610
    • /
    • 2021
  • Wireless charging method using a laser is considered as the most efficient method at a long distance of the wireless charging method. Combining long-range laser wireless charging technology with wireless communication technology will make it possible to use it for a variety of applications. Accordingly, this paper shows the results of research and experiments on wireless charging and wireless communication simultaneously based on a laser. This technique uses a laser as a light source for E/O(: Electric-to-Optical) conversion at the transmitter for optical wireless power transmission. In the experimental results, the optical power transmission using a 100 mW laser transmitter and a solar cells receiver showed a DC-to-DC efficiency of 1.9 %, wireless optical communication showed a transmission speed of up to 90 kbps when the transmission distance is 15 m.

Design of 2-dimensional trackling optical receiver systems for optical wireless mobile communications (광 무선 이동통신용 2차원 추적 광학 수신계 설계)

  • Park, Seung-Hyun;Lee, Dong-Suk;Kim, Kyung-Hun;Lee, Ill-Hang
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.28-29
    • /
    • 2004
  • Optical wireless mobile communications have the potential to provide wide bandwidth and security . We have proposed and designed the 2-dimensional tracking optical receiver systems for optical wireless mobile communication. The receiver system consist of 4${\times}$4 photodiode array can receive optical signal from the transmitter. The room size is 5${\times}$5m$^2$ and the room height is 3m.

  • PDF

Optical Encryption and Information Authentication of 3D Objects Considering Wireless Channel Characteristics

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.494-499
    • /
    • 2013
  • In this paper, we present an optical encryption and information authentication of 3D objects considering wireless channel characteristics. Using the optical encryption such as double random phase encryption (DRPE) and 3D integral imaging, a 3D scene with encryption can be transmitted. However, the wireless channel causes the noise and fading effects of the 3D transmitted encryption data. When the 3D encrypted data is transmitted via wireless channel, the information may be lost or distorted because there are a lot of factors such as channel noise, propagation fading, and so on. Thus, using digital modulation and maximum likelihood (ML) detection, the noise and fading effects are mitigated, and the encrypted data is estimated well at the receiver. In addition, using computational volumetric reconstruction of integral imaging and advanced correlation filters, the noise effects may be remedied and 3D information may be authenticated. To prove our method, we carry out an optical experiment for sensing 3D information and simulation for optical encryption with DRPE and authentication with a nonlinear correlation filter. To the best of our knowledge, this is the first report on optical encryption and information authentication of 3D objects considering the wireless channel characteristics.

Optical Image Encryption and Decryption Considering Wireless Communication Channels

  • Cho, Myungjin;Lee, In-Ho
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • In this paper, we discuss optical encryption and decryption considering wireless communication channels. In wireless communication systems, the wireless channel causes noise and fading effects of the transmitted information. Optical encryption technique such as double-random-phase encryption (DRPE) is used for encrypting transmitted data. When the encrypted data is transmitted, the information may be lost or distorted because there are a lot of factors such as channel noise, propagation fading, etc. Thus, using digital modulation and maximum likelihood (ML) detection, the noise and fading effects are mitigated, and the encrypted data is estimated well at the receiver. To the best of our knowledge, this is the first report that considers the wireless channel characteristics of the optical encryption technique.

Optical Wireless Remote Control Using Indoor LED Lightings (LED 실내조명을 이용한 광무선 원격제어)

  • Sohn, Kyung-Rak;Sohn, Chang-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1111-1116
    • /
    • 2012
  • At present, indoor optical wireless communications using LED lightings has been widely studied. The combination of this technology to the low voltage powerline grid installed in each home makes an efficient method for fulfilling the premise of broadband access for home networking. In this paper, white LEDs were used for both illumination and remote-control, so that information can be broadcast within a room for control the optical wireless systems. We implemented a model car to evaluate the performance of optical wireless remote-control. The requirement for levels of illumination suitable for communication were investigated and applied to design the test-bed. In spite of limitation of line-of-sight communications, it will open up new applications to the optical wireless remote control system in an electromagnetic interference region.

Wireless Optical Fiber Interferometer Arterial Pulse Wave Sensor System (무선 기반의 광섬유 간섭계형 맥파센서 시스템)

  • Park, Jaehee;Shin, Jong-Dug
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.439-443
    • /
    • 2013
  • A wireless optical fiber interferometer arterial pulse wave sensor system is developed for remote sensing. The wireless optical fiber sensor system consists of Zigbee communication modules and an optical fiber interferometer arterial pulse wave sensor. The optical fiber arterial pulse wave sensor is an in-line Michelson interferometer enclosed with steel reinforcement in a heat-shrinkable tube. The Zigbee communication modules are composed of an ATmega128L microprocessor and a CC2420 Zigbee chip. The arterial pulse waves detected by the optical fiber sensor were transmitted and received via the Zigbee communication modules. The experimental results show that the wireless optical fiber sensor system can be used for monitoring the arterial pulse waves remotely.

A Wireless Optical Identification System Using Solar Cells (솔라 셀을 이용한 무선광 인식 장치)

  • Lee, Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.494-500
    • /
    • 2010
  • In this paper, we newly propose a wireless optical identification system and carried out experiments. A wireless optical identification system consists of a reader and a transponder. The configuration of a reader is the same as that of a transponder, which uses LED light as transmission media and detects the signal light with a solar cell. Optical alignment with a lens is not required because the absorption area of a solar cell is wide and flat, and it is very easy to attach a solar cell on the surface of an object. As the light wavelength does not interfere with radio frequency, a wireless optical identification system shows stable operation. In experiments, we realized a wireless optical identification system that automatically identifies the transponder data at a distance of 1 m using solar cells.

Design of optical transmitter system for high-speed wireless optical communication (초고속 무선 광통신을 위한 송신광학계의 설계)

  • 권영훈;임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.158-170
    • /
    • 2004
  • Wireless optical communication is expected for high-speed optical communication in the areas of saturated optical fiber communication and low population density. In this paper, we present an optical transmitter system for wireless optical communication with new design concepts different from the usual optical imaging system. The specifications are the following: the source is a laser diode(LD) of wavelength 830 nm in which the divergent angle from the tangential plane differs from that from the sagittal plane. Here, the requested transmission distances are very long range such as 500 m to 1500 m and beam diameter is 3 m at the receiver with symmetrical energy distribution. For the evaluation characteristics of this kind of non-imaging system, two optical quantities, the relative illumination distribution and energy transfer efficiency, are numerically calculated through lots of ray tracing.