• Title/Summary/Keyword: Optical spectroscopy

Search Result 1,568, Processing Time 0.039 seconds

A Study on the Electromigration Characteristics in Ag, Cu, Au, Al Thin Films (Ag, Cu, Au, Al 박막에서 엘렉트로마이그레이션 특성에 관한 연구)

  • Kim, Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to less than $0.25{\mu}m$, which results in high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in Ag, Cu, Au, and Al thin films, etc. EM resistance characteristics of Ag, Cu, Au, and Al thin films with high electrical conductivities were investigated by measuring the activation energies from the TTF (Time-to-Failure) analysis. Optical microscope and XPS (X-ray photoelectron spectroscopy) analysis were used for the failure analysis in thin films. Cu thin films showed relatively high activation energy for the electromigration. Thus Cu thin films may be potentially good candidate for the next choice of advanced thin film interconnection materials where high current density and good EM resitance are required. Passivated Al thin films showed the increased MTF(Mean-time-to-Failure) values, that is, the increased EM resistance characteristics due to the dielectric passivation effects at the interface between the dielectric overlayer and the thin film interconnection materials.

[O2/N2] Plasma Etching of Acrylic in a Multi-layers Electrode RIE System (다층 RIE Electrode를 이용한 아크릴의 O2/N2 플라즈마 건식 식각)

  • Kim, Jae-Kwon;Kim, Ju-Hyeong;Park, Yeon-Hyun;Joo, Young-Woo;Baek, In-Kyeu;Cho, Guan-Sik;Song, Han-Jung;Lee, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.642-647
    • /
    • 2007
  • We investigated dry etching of acrylic (PMMA) in $O_2/N_2$ plasmas using a multi-layers electrode reactive ion etching (RIE) system. The multi-layers electrode RIE system had an electrode (or a chuck) consisted of 4 individual layers in a series. The diameter of the electrodes was 150 mm. The etch process parameters we studied were both applied RIE chuck power on the electrodes and % $O_2$ composition in the $N_2/O_2$ plasma mixtures. In details, the RIE chuck power was changed from 75 to 200 W.% $O_2$ in the plasmas was varied from 0 to 100% at the fixed total gas flow rates of 20 sccm. The etch results of acrylic in the multilayers electrode RIE system were characterized in terms of negatively induced dc bias on the electrode, etch rates and RMS surface roughness. Etch rate of acrylic was increased more than twice from about $0.2{\mu}m/min$ to over $0.4{\mu}m/min$ when RIE chuck power was changed from 75 to 200 W. 1 sigma uniformity of etch rate variation of acrylic on the 4 layers electrode was slightly increased from 2.3 to 3.2% when RIE chuck power was changed from 75 to 200 W at the fixed etch condition of 16 sccm $O_2/4\;sccm\;N_2$ gas flow and 100 mTorr chamber pressure. Surface morphology was also investigated using both a surface profilometry and scanning electron microscopy (SEM). The RMS roughness of etched acrylic surface was strongly affected by % $O_2$ composition in the $O_2/N_2$ plasmas. However, RIE chuck power changes hardly affected the roughness results in the range of 75-200 W. During etching experiment, Optical Emission Spectroscopy (OES) data was taken and we found both $N_2$ peak (354.27 nm) and $O_2$ peak (777.54 nm). The preliminarily overall results showed that the multi-layers electrode concept could be successfully utilized for high volume reactive ion etching of acrylic in the future.

Studies on the Aging Characteristics in Different Parts of Beeswax-treated Duplicates during Humidified Artificial Aging (습식 인공열화 시 밀랍본 복제품의 제책 부위별 열화특성)

  • Choi, Kyoung-Hwa;Cho, Jung Hye;Kang, Yeong Seok;Yang, Eun Jung;Jeong, Hye Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.72-79
    • /
    • 2012
  • In this study, to understand the aging factor and mechanism in different partitions of the beeswax-treated volumes, the duplicated beeswax-treated volume was artificially aged at $80^{\circ}C$ of temperature and 65% of relative humidity and then a physical and optical properties of an aged volumes was analyzed. Also, the degraded components of the beeswax samples isolated from different partitions of aged volumes was measured using a gas chromatography/mass spectroscopy (GC/MS). In results, the surface of beeswax-treated volume which is primarily affected by a main aging factors such as light, oxygen, moisture was more deteriorated than the inside of that volume. However, unlike inside of the book volume which was made from paper, the inside of beeswax-treated volume wax was also considerably deteriorated. The inside of the beeswax-treated volume is largely unaffected by the oxygen and humidity during aging due to the water repellency and the air permeation resistance of beeswax. Therefore, it is confirmed that aging factors and mechanisms in the inside of the volume are different from thats of the outside of the volume. This fact was also verified by the results of GC/MS analysis of an beeswax samples which was sampled from different partitions of aged volumes. As result as GC/MS analysis of the beeswax extracted from the outside of the aged volume, the low molecular compounds with a carbon length of $C_9-C_{20}$ (fatty acid, etc) were increased and the compounds with a carbon length of above $C_{34}$ (ester, etc) were also increased. But the compounds with a chain length of $C_{21}-C_{36}$ (hydrocarbon, alcohol, etc) were decreased. In case of the aged beeswax of inside, the low molecular compounds with a carbon length of $C_9-C_{20}$ (fatty acid, etc) and the compounds with a chain length of $C_{21}-C_{36}$ (hydrocarbon, alcohol, etc) were increased. While, the compounds with a carbon length of above $C_{34}$ (ester, etc) were decreased.

Simultaneous Transfer and Patterning of CVD-Grown Graphene with No Polymeric Residues by Using a Metal Etch Mask

  • Jang, Mi;Jeong, Jin-Hyeok;Trung, T.Q.;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.642-642
    • /
    • 2013
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as high electron mobility, high thermal conductivity and optical transparency. Especially, chemical vapor deposition (CVD) grown graphene has been used as a promising material for high quality and large-scale graphene film. Unfortunately, although CVD-grown graphene has strong advantages, application of the CVD-grown graphene is limited due to ineffective transfer process that delivers the graphene onto a desired substrate by using polymer support layer such as PMMA(polymethyl methacrylate). The transferred CVD-grown graphene has serious drawback due to remaining polymeric residues generated during transfer process, which induces the poor physical and electrical characteristics by a p-doping effect and impurity scattering. To solve such issue incurred during polymer transfer process of CVD-grown graphene, various approaches including thermal annealing, chemical cleaning, mechanical cleaning have been tried but were not successful in getting rid of polymeric residues. On the other hand, lithographical patterning of graphene is an essential step in any form of microelectronic processing and most of conventional lithographic techniques employ photoresist for the definition of graphene patterns on substrates. But, application of photoresist is undesirable because of the presence of residual polymers that contaminate the graphene surface consistent with the effects generated during transfer process. Therefore, in order to fully utilize the excellent properties of CVD-grown graphene, new approach of transfer and patterning techniques which can avoid polymeric residue problem needs to be developed. In this work, we carried out transfer and patterning process simultaneously with no polymeric residue by using a metal etch mask. The patterned thin gold layer was deposited on CVD-grown graphene instead of photoresists in order to make much cleaner and smoother surface and then transferred onto a desired substrate with PMMA, which does not directly contact with graphene surface. We compare the surface properties and patterning morphology of graphene by scanning electron microscopy (SEM), atomic force microscopy(AFM) and Raman spectroscopy. Comparison with the effect of residual polymer and metal on performance of graphene FET will be discussed.

  • PDF

The Characterization of Spherical Perticles in Steam Generator Sludge (증기발생기 슬러지 중 구형입자의 특성 조사)

  • Pyo, Hyung-Yeal;Park, Yang-Soon;Park, Sun-Dal;Park, Kyoung-Kyun;Song, Byung-Chul;Park, Yong-Joon;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • Ion exchange resin particles should not be found in steam generator(S/G) sludge. The suspicious spherical resin particles observed in S/G sludge sample were characterized for particle size distribution under optical microscope using the micro-technique, for element analysis by the electron probe micro analysis (EPMA), and for molecular identification by the IR spectroscopy. The particle sizes are distributed from 1 to $200{\mu}m$ for the sludge, while 40 to $500{\mu}m$ for the spherical resin particles. The results of the elemental analysis showed different major impurities: Si, Al, Mn, Cr, Ni, Zn and Ti for the sludge particles, while Si, Cu, Zn for the spherical resin particles. However, both particles contain Fe as a matrix of magnetite $(Fe_3O_4)$. IR spectrum of the spherical particles was not quite similar to the IR spectrum of ion exchange resins used in S/G system. These results indicate that the spherical particles are not related to ion exchange resin particles and may be formed by the process of the sludge formation.

  • PDF

Satellite (SCIAMACHY) Measurements of Tropospheric SO2 and NO2: Seasonal Trends of SO2 and NO2 Levels over Northeast Asia in 2006 (인공위성 (SCIAMACHY) 데이터를 이용한 대류권 SO2, NO2 측정: 2006년 동북아시아 지역의 계절적 SO2, NO2 변화 추세)

  • Lee, Chul-Kyu;Richter, Andreas;Burrows, John P.;Kim, Young-J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.176-188
    • /
    • 2008
  • Anthropogenic emissions of nitrogen oxides and sulfur dioxide in Northeast Asia are of great concern because of their impact on air quality and atmospheric chemistry on regional and intercontinental scales. Satellite remote sensing based on DOAS (Differential Optical Absorption Spectroscopy) technique has been preferred to measure atmospheric trace species and to investigate their emission characteristics on regional and global scales. Absorption spectra obtained by the satellite-born instrument, SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) have been utilized to retrieve the information of $SO_2$ and $NO_2$ over Northeast Asia. $SO_2$ levels over Northeast Asia were in order of East China, Yellow Sea, South Sea and Korean Peninsula with mean vertical columns of $1.78({\pm}1.0){\times}10^{16}$, $1.11({\pm}0.67){\times}10^{16}$, $0.60({\pm}0.63){\times}10^{16}$, $0.71({\pm}0.65){\times}10^{16}\;molecules/cm^2$, respectively. $NO_2$ levels were in order of East China, Yellow Sea, Korean Peninsula, and South Sea with mean vertical columns of $1.2({\pm}0.56){\times}10^{16}$, $0.38({\pm}0.19){\times}10^{16}$, $0.48({\pm}0.28){\times}10^{16}$, $0.26({\pm}0.16){\times}10^{16}\;molecules/cm^2$, respectively. High levels of $SO_2$ and $NO_2$ were observed over East China, in particular in winter by the contribution of heating fuel combustion exhausts. The $SO_2$ and $NO_2$ levels over East China were the highest in January with 34% and 42% higher over the annual means. Low levels of $SO_2$ ranged over Korean peninsula, while $NO_2$ levels were relatively high, in particular in winter. The $SO_2$ and $NO_2$ levels over Yellow Sea were relatively higher compared to those over Korean peninsula and South Sea, which could be mainly attributed to their transport from East China.

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

A Study on Soil Contamination of Children's Parks within the Gyeonggi-do Province Area (경기도내 어린이공원의 토양오염실태 연구)

  • Kim, Woongsoo;Song, Ilseok;Shin, Jonghyun;Oh, Cheonhwan;Kim, Eunah;Kim, Keugtae;Kim, Hyunja;Kim, Jongsu;Choi, Yunho
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • Objectives: The pollution status of heavy metals within the soil was investigated with an aim to establishing a sustainable soil environment within parks and amusement facilities installed in urban areas of Gyeonggi-do Province. Methods: As sampling sites, 14 locations were selected from a city with a number of factories near a residential area, a residential area, and a children's park in a city with mixed green areas. Seven kinds of heavy metals, including Cd, Pb, and Hg, and the pH of soil were analyzed three times by inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic absorption spectrometer (AAS). Results: In this study, the pH of the samples from the residential park and industrial park showed 5.7-6.5 and 5.9-7.0, respectively. The overall mean concentration (mg/kg) of heavy metals was Zn (132.8), Ni (73.0), Cu (47.4), Pb (35.9), As (4.84), Cd (0.39), and Hg (0.07), indicating that these concentrations of heavy metals were lower than those for the area 1 standard of soil pollution concern criteria. In addition, the sampling sites in the residential area and the industrial area also showed the same tendency for concentration distribution. Conclusions: We found that the soil pollution class (SPC) of some spots were over 200, which are third and fourth classes. In order to manage a sustainable soil environment in a city park, it is suggested that local governments, the management bodies for these parks, need to manage, supervise, and investigate soil pollution and quickly replace contaminated soil.

Electrical Properties of Transparent Conductive Films of Single-Walled Carbon Nanotubes with Their Purities

  • Lee, Seung-Ho;Goak, Jeung-Choon;Lee, Chung-Yeol;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.56-56
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as a promising material for transparent conducting films (TCFs), due to their superior electrical conductivity, high mechanical strength, and complete flexibility as well as their one-dimensional morphological features of extremely high length-to-diameter ratios. This study investigated three kinds of SWCNTs with different purities: as-produced SWCNTs (AP-SWCNTs), thermally purified SWCNTs (TH-SWCNTs), thermally and acid purified SWCNTs (TA-SWCNTs). The purity of each SWCNT sample was assessed by considering absorption peaks in the semiconducting ($S_{22}$) and metallic ($M_{11}$) tubes with UV-Vis NIR spectroscopy and a metal content with thermogravimetric analysis (TGA). The purity increased as proceeding the purification stages from the AP-SWCNTs through the thermal purification to the acid purification. The samples containing different contents of SWCNTs were dispersed in water using sodium dodecyl benzensulfate (SDBS). Aqueous suspensions of different purities of SWCNTs were prepared to have similar absorbances in UV-Vis absorption measurements so that one can make the TCFs possess similar optical transmittances irrespective of the SWCNT purity. Transparent conductive SWCNT networks were formed by spraying an SWCNT suspension onto a poly(ethyleneterephthalate) (PET) substrate. As expected, the TCFs fabricated with AP-SWCNTs showed very high sheet resistances. Interestingly, the TH-SWCNTs gave lower sheet resistances to the TFCs than the TA-SWCNTs although the latter was of higher purity in the SWCNT content than the former. The TA-SWCNTs would be shortened in length and be more bundled by the acid purification, relative to the TH-SWCNTs. For both purified (TH, TA) samples, the subsequent nitric acid ($HNO_3$) treatment greatly lowered the sheet resistances of the TCFs, but almost eliminated the difference of sheet resistances between them. This seems to be because the electrical conductivity increased not only due to further removal of surfactants but also due to p-type doping upon the acid treatment. The doping effect was likely to overwhelm the effect of surfactant removal. Although the nitric acid treatment resulted in the similar. electrical properties to the two samples, the TCFs of TH-SWCNTs showed much lower sheet resistances than those of the TA-SWCNTs prior to the acid treatment.

  • PDF

Temperature Dependence on Dry Etching of $ZrO_2$ Thin Films in $Cl_2/BCl_3$/Ar Inductively Coupled Plasma ($Cl_2/BCl_3$/Ar 유도 결합 플라즈마에서 온도에 따른 $ZrO_2$ 박막의 식각)

  • Yang, Xue;Kim, Dong-Pyo;Lee, Cheol-In;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.145-145
    • /
    • 2008
  • High-k materials have been paid much more attention for their characteristics with high permittivity to reduce the leakage current through the scaled gate oxide. Among the high-k materials, $ZrO_2$ is one of the most attractive ones combing such favorable properties as a high dielectric constant (k= 20 ~ 25), wide band gap (5 ~ 7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2$/Si structure. During the etching process, plasma etching has been widely used to define fine-line patterns, selectively remove materials over topography, planarize surfaces, and trip photoresist. About the high-k materials etching, the relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Among several etching techniques, we chose the inductively coupled plasma (ICP) for high-density plasma, easy control of ion energy and flux, low ownership and simple structure. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. During the etching process, the wafer surface temperature is an important parameter, until now, there is less study on temperature parameter. In this study, the etch mechanism of $ZrO_2$ thin film was investigated in function of $Cl_2$ addition to $BCl_3$/Ar gas mixture ratio, RF power and DC-bias power based on substrate temperature increased from $10^{\circ}C$ to $80^{\circ}C$. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by scanning emission spectroscope (SEM). The chemical state of film was investigated using energy dispersive X-ray (EDX).

  • PDF