• Title/Summary/Keyword: Optical spectroscopy

Search Result 1,564, Processing Time 0.031 seconds

Synthesis and Characterization of Au@TiO2 Core-Shell Microspheres (Au@TiO2 코어쉘 미세 입자의 합성 및 특성 평가)

  • Kim, Sun-Geum;Jang, Ha Jun;Jang, Jaewon;Shim, Jae-Hyun;Baek, Sung-June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.392-397
    • /
    • 2022
  • We present the structural and optical properties of Au@TiO2 core-shell microsphere structure prepared by a hydrothermal synthesis method. As a way to improve the efficiency of organic solar cells, the Au@TiO2 core-shell microsphere was synthesized to use the local surface plasmon resonance (LSPR) phenomenon. The synthesized results were confirmed to have the Au@TiO2 core-shell structure using a high-resolution transmission electron microscopy. An absorption was observed to occur at 527 nm belonging to the visible light region using a visible light spectroscopy, which supports the LSPR phenomenon. We suggest that the Au@TiO2 core-shell microsphere is highly likely to be applied to organic solar cells including dye-sensitized solar cells. In addition, we expect it to be widely used not only in the energy but also in the bio as well as in the environmental fields.

Adhesive Strength and Interface Characterization of CF/PEKK Composites with PEEK, PEI Adhesives Using High Temperature oven Welding Process (고온 오븐 접합을 적용한 PEEK, PEI 기반 CF/PEKK 복합재의 접착 강도 및 계면 특성 평가)

  • Park, Seong-Jae;Lee, Kyo-Moon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • This study was conducted to determine the effect of molecular formation of adhesive on interface characterization of thermoplastic composites. Carbonfiber/polyetherketoneketone (CF/PEKK) thermoplastic composites were fusion bonded and PEEK, PEI adhesive bonded using a high-temperature oven welding process. In addition, lap shear strength test and fracture surface analysis using a digital optical microscope and a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were performed. As a result, the adhesive bonding method improved adhesion strength with interphase having increased molecular formation of ether groups, ketone groups, and imide groups which mainly constitutes the CF/PEKK and adhesives. Furthermore, it was found that the use of PEEK containing more ether groups and ketone groups forms a more strongly bonded interphase and enhances the adhesive force of the CF/PEKK composites.

DRY ETCHING CHARACTERISTICS OF INGAN USING INDUCTIVELY COUPLED $Cl_2/CHF_3,{\;}Cl_2/CH_4$ AND Cl_2/Ar PLASMAS.

  • Lee, D.H.;Kim, H.S.;G.Y. Yeom;Lee, J.W.;Kim, T.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.59-59
    • /
    • 1999
  • In this study, planer inductively coupled $Cl_2$ based plasmas were used to etch InGaN and the effects of plasma conditions on the InGaN etch properties have been characterized using quadrupole mass spectrometry(QMS) and optical emission spectroscopy(OES). As process conditions used to study the effects of plasma characteristics on the InGaN etch properties, $Cl_2$ was used as the main etch gas and $CHF_3,{\;}CH_4$, and Ar were used as additive gases. Operational pressure was varied from SmTorr to 3OmTorr, inductive power and bias voltage were varied from 400W to 800W and -50V to -250V, respectively while the substrate temperature was fixed at 50 centigrade. For the $Cl_2$ plasmas, selective etching of GaN to InGaN was obtained regardless of plasma conditions. The small addition of $CHF_3$ or Ar to $Cl_2$ and the decrease of pressure generally increased InGaN etch rates. The selective etching of InGaN to GaN could be obtained by the reduction of pressure to l5mTorr in $CI_2/IO%CHF_3{\;}or{\;}CI_2/IO%Ar$ plasma. The enhancement of InGaN etch rates was related to the ion bombardment for $CI_2/Ar$ plasmas and the formation of $CH_x$ radicals for $CI_2/CHF_3(CH_4)$ plasmas.

  • PDF

Near-Infrared Photopolarimetry of Large Main Belt Asteroid - (4) Vesta

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Takahashi, Jun;Naito, Hiroyuki;Kwon, Jungmi;Kuroda, Daisuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • The polarization degree as a function of phase angle (the Sun-target-observer's angle), so-called the polarimetric phase curves (PPC), have provided priceless information on asteroids' albedos since B. Lyot (1929). Succeeding experimental works in 1970s have confirmed the Umow law: There is a universal and strong correlation between the albedo and the PPC slope (slope of the tangential line at the zero of the PPC at phase angle ~ 20 degrees). Experiments in 1990s (ref [1]), on the other hand, have demonstrated that the negative branch of PPC is dependent on the size parameter (X ~ π * particle-size / wavelength), especially when X <~5. The change in particle size changed the minimum polarization degree, location of the minimum, and the width of the negative branch (called the inversion angle). From polarimetry[2] and spectroscopy[3], large asteroids are expected to be covered with fine (<~ 10 ㎛ size) particles due to the gravity. The size parameters are X ~ 30 at the optical wavelength (λ ~ 0.5 ㎛) and X ~ 10 in near-infrared (J, H, Ks bands; λ ~ 1.2-2.2 ㎛), if the representative particle size of 5 ㎛ is considered. Accordingly, the near-infrared polarimetry has a great potential to validate the idea in ref[1]. We conducted near-infrared photopolarimetry of the large asteroid (4) Vesta using the Nishiharima Infrared Camera (NIC) at Nishi-Harima Astronomical Observatory (NHAO). NIC allows simultaneous polarimetric measurements in J, H, and Ks bands, and thus the change of PPC is obtained for three different size parameters. As a result, we found a signature of the change in the negative branch in the PPC of asteroid (4) Vesta. We will introduce our observation and the results and give an interpretation of the regolith on Vesta.

  • PDF

Physicochemical characterization of two bulk fill composites at different depths

  • Guillermo Grazioli ;Carlos Enrique Cuevas-Suarez ;Leina Nakanishi ;Alejandro Francia;Rafael Ratto de Moraes
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.3
    • /
    • pp.39.1-39.12
    • /
    • 2021
  • Objectives: This study analyzed the physical-chemical behavior of 2 bulk fill resin composites (BFCs; Filtek Bulk Fill [FBF], and Tetric-N-Ceram Bulk Fill [TBF]) used in 2- and 4-mm increments and compared them with a conventional resin composite (Filtek Z250). Materials and Methods: Flexural strength and elastic modulus were evaluated by using a 3-point bending test. Knoop hardness was measured at depth areas 0-1, 1-2, 2-3, and 3-4 mm. The translucency parameter was measured using an optical spectrophotometer. Real-time polymerization kinetics was analyzed using Fourier transform infrared spectroscopy. Results: Flexural strength was similar among the materials, while TBF showed lower elastic modulus (Z250: 6.6 ± 1.3, FBF: 6.4 ± 0.9, TBF: 4.3 ± 1.3). The hardness of Z250 was similar only between 0-1 mm and 1-2 mm. Both BFCs had similar hardness until 2-3 mm, and showed significant decreases at 3-4 mm (FBF: 33.45 ± 1.95 at 0-1 mm to 23.19 ± 4.32 at 3-4 mm, TBF: 23.17 ± 2.51 at 0-1 mm to 15.11 ± 1.94 at 3-4 mm). The BFCs showed higher translucency than Z250. The polymerization kinetics of all the materials were similar at 2-mm increments. At 4-mm, only TBF had a similar degree of conversion compared with 2 mm. Conclusions: The BFCs tested had similar performance compared to the conventional composite when used in up to 2-mm increments. When the increment was thicker, the BFCs were properly polymerized only up to 3 mm.

A Study on Co-precipitation of Positive Electrode Active Material for Recycled Lithium-ion Batteries Using Black Powder Leaching Solution (블랙 파우더 침출용액을 이용한 재활용 리튬이온전지의 양극 활물질 공침법에 대한 연구)

  • JAEGEUN LEE;JAEKYUNG LEE;SUNGGI KWON;GYECHOON PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.336-344
    • /
    • 2024
  • In this study, a Ni0.9Co0.05Mn0.05(OH)2 precursor used as an anode active material using a black powder leaching solution of a recycled lithium ion battery was prepared through coprecipitation synthesis with co-precipitation time, NH4OH concentration, pH, and stirring time as variables. The characteristics of the prepared powder were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size analysis (PSA), and inductively coupled plasma optical emission spectroscopy (ICP-OES). It was confirmed that the single crystal thickness of the LiNi1-x-yCoxMnyO2 (NCM) precursor changes depending on the NH4OH concentration and reaction pH value, and thicker single crystals are formed at 2 M NH4OH compared to 1 M and at pH 10.8-11.8 compared to pH 11.8-12.0. NCM precursor particles increased with coprecipitation time, and it was confirmed that the 72 hours NCM precursor had the largest particle size. Through ICP-OES analysis, it was confirmed that the NCM precursor was synthesized with the target composition of Ni2+:Co2+:Mn2+=90:5:5.

A Review of Hyperspectral Imaging Analysis Techniques for Onset Crop Disease Detection, Identification and Classification

  • Awosan Elizabeth Adetutu;Yakubu Fred Bayo;Adekunle Abiodun Emmanuel;Agbo-Adediran Adewale Opeyemi
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based on hyperspectral technologies. Hyperspectral analysis is a new subject that combines optical spectroscopy and image analysis methods, which makes it possible to simultaneously evaluate both physiological and morphological parameters. Among the physiological and morphological parameters are classifying healthy and diseased plants, assessing the severity of the disease, differentiating the types of pathogens, and identifying the symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible to the human eye. Plant diseases cause significant economic losses in agriculture around the world as the symptoms of diseases usually appear when the plants are infected severely. Early detection, quantification, and identification of plant diseases are crucial for the targeted application of plant protection measures in crop production. Hence, this can be done by possible applications of hyperspectral sensors and platforms on different scales for disease diagnosis. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant diseases are considered, such as detection, differentiation, and identification of diseases, estimation of disease severity, and phenotyping of disease resistance of genotypes. This review provides a deeper understanding, of basic principles and implementation of hyperspectral sensors that can measure pathogen-induced changes in plant physiology. Hence, it brings together critically assessed reports and evaluations of researchers who have adopted the use of this application. This review concluded with an overview that hyperspectral sensors, as a non-invasive system of measurement can be adopted in early detection, identification, and possible solutions to farmers as it would empower prior intervention to help moderate against decrease in yield and/or total crop loss.

Retrieval of Sulfur Dioxide Column Density from TROPOMI Using the Principle Component Analysis Method (주성분분석방법을 이용한 TROPOMI로부터 이산화황 칼럼농도 산출 연구)

  • Yang, Jiwon;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1173-1185
    • /
    • 2019
  • We, for the first time, retrieved sulfur dioxide (SO2) vertical column density (VCD) in industrial and volcanic areas from TROPOspheric Monitoring Instrument (TROPOMI) using the Principle component analysis(PCA) algorithm. Furthermore, SO2 VCDs retrieved by the PCA algorithm from TROPOMI raw data were compared with those retrieved by the Differential Optical Absorption Spectroscopy (DOAS) algorithm (TROPOMI Level 2 SO2 product). In East Asia, where large amounts of SO2 are released to the surface due to anthropogenic source such as fossil fuels, the mean value of SO2 VCD retrieved by the PCA (DOAS) algorithm was shown to be 0.05 DU (-0.02 DU). The correlation between SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm were shown to be low (slope = 0.64; correlation coefficient (R) = 0.51) for cloudy condition. However, with cloud fraction of less than 0.5, the slope and correlation coefficient between the two outputs were increased to 0.68 and 0.61, respectively. It means that the SO2 retrieval sensitivity to surface is reduced when the cloud fraction is high in both algorithms. Furthermore, the correlation between volcanic SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm is shown to be high (R = 0.90) for cloudy condition. This good agreement between both data sets for volcanic SO2 is thought to be due to the higher accuracy of the satellite-based SO2 VCD retrieval for SO2 which is mainly distributed in the upper troposphere or lower stratosphere in volcanic region.

Investigation of the Effect of Calculation Method of Offset Correction Factor on the GEMS Sulfur Dioxide Retrieval Algorithm (GEMS 이산화황 산출 현업 알고리즘에서 오프셋 보정 계수 산정 방법에 대한 영향 조사)

  • Park, Jeonghyeon;Yang, Jiwon;Choi, Wonei;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.189-198
    • /
    • 2022
  • In this present study, we investigated the effect of the offset correction factor calculation method on the sulfur dioxide (SO2) column density in the SO2 retrieval algorithm of the Geostationary Environment Monitoring Spectrometer (GEMS) launched in February 2020. The GEMS operational SO2 retrieval algorithm is the Differential Optical Absorption Spectroscopy (DOAS) - Principal Component Analysis (PCA) Hybrid algorithm. In the GEMS Hybrid algorithm, the offset correction process is essential to correct the absorption effect of ozone appearing in the SO2 slant column density (SCD) obtained after spectral fitting using DOAS. Since the SO2 column density may depend on the conditions for calculating the offset correction factor, it is necessary to apply an appropriate offset correction value. In this present study, the offset correction values were calculated for days with many cloud pixels and few cloud pixels, respectively. And a comparison of the SO2 column density retrieved by applying each offset correction factor to the GEMS operational SO2 retrieval algorithm was performed. When the offset correction value was calculated using radiance data of GEMS on a day with many cloud pixels was used, the standard deviation of the SO2 column density around India and the Korean Peninsula, which are the edges of the GEMS observation area, was 1.27 DU, and 0.58 DU, respectively. And around Hong Kong, where there were many cloud pixels, the SO2 standard deviation was 0.77 DU. On the other hand, when the offset correction value calculated using the GEMS data on the day with few cloud pixels was used, the standard deviation of the SO2 column density slightly decreased around India (0.72 DU), Korean Peninsula (0.38 DU), and Hong Kong (0.44 DU). We found that the SO2 retrieval was relatively stable compared to the SO2 retrieval case using the offset correction value on the day with many cloud pixels. Accordingly, to minimize the uncertainty of the GEMS SO2 retrieval algorithm and to obtain a stable retrieval, it is necessary to calculate the offset correction factor under appropriate conditions.

Evaluation of Feed Values for Imported Hay Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 수입 건초의 사료가치 평가)

  • Park, Hyung Soo;Kim, Ji Hye;Choi, Ki Choon;Oh, Mirae;Lee, Ki-Won;Lee, Bae Hun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. The objective of this study was to evaluate the potential of NIRS, applied to imported forage, to estimate the moisture and chemical parameters for imported hays. A population of 392 imported hay representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1 nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The R2 and SECV for imported hay calibration were 0.92(SECV 0.61%) for moisture, 0.98(SECV 0.65%) for acid detergent fiber, 0.97(SECV 0.40%) for neutral detergent fiber, 0.99(SECV 0.06%) for crude protein and 0.97(SECV 3.04%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of imported hay in Korea for routine analysis method to evaluate the feed value.