• Title/Summary/Keyword: Optical sensitivity

Search Result 875, Processing Time 0.028 seconds

Irradiance Distribution Analysis of Inclined-cut Multi-mode Optical Fiber for Optical Microphone Design (광 마이크로폰 설계를 위한 경사 절단된 멀티모드 광섬유의 조도분포 해석)

  • Kim, Kyong-Woo;Che, Woo-Seong;Kwon, Hyu-Sang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1270-1277
    • /
    • 2008
  • For designing intensity modulation type optical microphone, the irradiance distribution which can be applied to inclined-cut geometrical configuration is suggested. The model is important in analysis of response characteristics for intensity modulation type optical microphone. To overcome low sensitivity problem in intensity modulation type optical microphone, inclined-cut optical fiber is considered here. Based on optical geometry, the inclined-cut optical fiber sensor is designed and fabricated. The experiments are carried out to evaluate sensor performance.

The analysis of dependence of sensitivity vector of ESPI on the illumination geometry (ESPI 입사광의 기하구조에 따른 sensitivity vector 분석)

  • 홍석경;백성훈;조재완;김철중
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.379-385
    • /
    • 1994
  • The sensitivity vector which depends on geometry of object illumination angles and distances of ESPI was analyzed. And the sensitivities of in-plane and out-of-plane displacements have been investigated. From these results, we have the conclusion that it is useful to use the diverging beam for object illumination. With diverging object illumination, only little errors are occurred when we approximate the sensitivity vector to constant all over the object surface.urface.

  • PDF

Development of Ultrasonic-Optical Fiber Sensor and its Applications (초음파-광섬유 센서의 개발과 그 응용)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • The outstanding mechanical property of optical fiber and the merits of acoustic emission sensing technique are unified for novel sensor system. The generated ultrasonic wave from piezoelectric generator are propagated along the optical fiber and also sensed. The propagated wave can be influence by external pressure on the optical fiber or environmental circumstance. The optical fiber sensor using ultrasonic wave has advantages compare with existing sensor system. In this study, the sensitivity of the optical fiber sensor is experimentally investigated. As the applications of the optical fiber sensor system using piezoelectric ultrasonic waves, the point load on the optical fiber is measured and the monitoring system for the void fraction of two phase flows is developed. The experimental results show the linear relationship between sensed voltage and void fraction.

  • PDF

Optical-Layer Restoration in a Self-Healing Ring Network Using a Wavelength-Blocker-based Reconfigurable Optical Add/Drop Multiplexer

  • Lee, Jiwon;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.23-26
    • /
    • 2018
  • Optical-layer restoration has been demonstrated with a wavelength-blocker (WB) -based reconfigurable optical add/drop multiplexer (ROADM). Two $2{\times}2$ optical switches with a control circuit were placed before and after a WB-based ROADM to provide automatic path restoration under fiber-failure conditions. Using the proposed node configuration, a 3-node self-healing ring (SHR) network has been implemented to demonstrate the feasibility of the automatic optical-layer restoration. From the results, the restoration time was measured to be ~4 ms under fiber-failure conditions, without any additional power penalty in receiver sensitivity.

Dispersion Tolerance for Optical Duobinary Transmitters based on a Mach-Zehnder Modulator and an Optical Filter (마크-젠더 변조기와 광 필터를 사용한 광 듀오바이너리 송신기의 분산 내성에 관한 연구)

  • Lee, Dong-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.141-145
    • /
    • 2011
  • We theoretically investigated dispersion tolerance of an optical duobinary transmitter employed a Mach-Zehnder modulator and an optical filter. Compared to the optical transmitter based on a Mach-Zehnder modulator and an optical delay interferometer by optimizing the applied voltage for improving the dispersion tolerance, the demonstrated duobinary transmitter provides improved receiver sensitivity and higher dispersion tolerance while maintaining narrow spectral bandwidth.

A Cost-competitive Optical Receiver Engine Based on Embedded Optics Technology for 400G PAM4 Optical Transceivers in Data Center Applications

  • Lee, Eun-Gu;Lee, Jyung Chan;Kang, Chang Hyun;Jeon, Kyeongwan;Choi, Jun-Seok;Lee, Hyun Soo;Park, Jong Woon;Moon, Jong Ha
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • We propose a novel, tiny optical receiver engine utilizing an all-in-one package based on embedded optics technology. The package's best transmission S21 and reflection S22 opto-electric (OE) bandwidths are 49.8 GHz and 34.9 GHz, respectively, and the reflectance of the optical engine is below -31.7 dB for all channels. The engine satisfies the MIL-STD-883G standard for reliability tests, such as mechanical and thermal shock, and vibration resistance. The sensitivity after 10 km single-mode fiber (SMF) transmission is below -8 dBm. The optical receiver engine is cost-competitive and applicable for 400G coarse wavelength division multiplexing 4 (CWDM4) 10 km optical transceivers.

Utilizing Optical Phantoms for Biomedical-optics Technology: Recent Advances and Challenges

  • Ik Hwan Kwon;Hoon-Sup Kim;Do Yeon Kim;Hyun-Ji Lee;Sang-Won Lee
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • Optical phantoms are essential in optical imaging and measurement instruments for performance evaluation, calibration, and quality control. They enable precise measurement of image resolution, accuracy, sensitivity, and contrast, which are crucial for both research and clinical diagnostics. This paper reviews the recent advancements and challenges in phantoms for optical coherence tomography, photoacoustic imaging, digital holographic microscopy, optical diffraction tomography, and oximetry tools. We explore the fundamental principles of each technology, the key factors in phantom development, and the evaluation criteria. Additionally, we discuss the application of phantoms used for enhancing optical-image quality. This investigation includes the development of realistic biological and clinical tissue-mimicking phantoms, emphasizing their role in improving the accuracy and reliability of optical imaging and measurement instruments in biomedical and clinical research.