• Title/Summary/Keyword: Optical sensing and sensors

Search Result 233, Processing Time 0.024 seconds

A Mini Review of Recent Advances in Optical Pressure Sensor

  • Gihun Lee;Hyunjin Kim;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Innovative and advanced technologies, including robots, augmented reality, virtual reality, the Internet of Things, and wearable medical equipment, have largely emerged as a result of the rapid evolution of modern society. For these applications, pressure monitoring is essential and pressure sensors have attracted considerable interest. To improve the sensor performance, several new designs of pressure sensors have been researched based on resistive, capacitive, piezoelectric, optical, and triboelectric types. In particular, optical pressure sensors have been actively studied owing to their advantages, such as robustness to noise and remote sensing capability. Herein, a review of recent research on optical pressure sensors with self-powered sensing, remote sensing, high spatial resolution, and multimodal sensing capabilities is presented from the viewpoints of design, fabrication, and signal processing.

Sensing properties of optical fiber sensor to ultrasonic guided waves

  • Zhou, Wensong;Li, Hui;Dong, Yongkang;Wang, Anbang
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.471-484
    • /
    • 2016
  • Optical fiber sensors have been proven that they have the potential to detect high-frequency ultrasonic signals, in structural health monitoring field which generally refers to acoustic emission signals from active structural damages and guided waves excited by ultrasonic actuators and propagating in waveguide. In this work, the sensing properties of optical fiber sensors based on Mach-Zehnder interferometer were investigated in the metal plate. Analytical formulas were conducted first to explore the parameters affecting its sensing performances. Due to the simple and definable frequency component, the Lamb wave excited by the piezoelectric wafer was employed to study the sensitivity of the proposed optical fiber sensors with respect to the frequency, rather than the acoustic emission signals. In the experiments, according to above investigations, spiral shape optical fiber sensors with different size were selected to increase their sensitivity. Lamb waves were excited by a circular piezoelectric wafer, while another piezoelectric wafer was used to compare their voltage responses. Furthermore, by changing the excitation frequency, the tuning frequency characteristic of the proposed optical fiber sensor was also investigated experimentally.

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

Computational analysis of the effect of SOI vertical slot optical waveguide specifications on integrated-optic biochemical waveguide wensitivity

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.395-407
    • /
    • 2021
  • The effect of the specifications of a silicon-on-insulator vertical slot optical waveguide on the sensitivity of homogeneous and surface sensing configurations for TE and TM polarization, respectively, was systematically analyzed using numerical software. The specifications were optimized based on the confinement factor and transmission power of the TE-guided mode distributed in the slot. The waveguide sensitivities of homogeneous and surface sensing were calculated according to the specifications of the optimized slot optical waveguide.

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures (경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술)

  • Han, Jae-Hung;Kang, Lae-Hyong;Mueller, Uwe C.;Rapp, Stephan;Baier, Horst
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

Gas Distribution Mapping and Source Localization: A Mini-Review

  • Taehwan Kim;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.75-81
    • /
    • 2023
  • The significance of gas sensors has been emphasized in various industries and applications, owing to the growing significance of environmental, social, and governance (ESG) management in corporate operations. In particular, the monitoring of hazardous gas leakages and detection of fugitive emissions have recently garnered significant attention across several industrial sectors. As industrial workplaces evolve to ensure the safety of their working environments and reduce greenhouse gas emissions, the demand for high-performance gas sensors in industrial sectors dealing with toxic substances is on the rise. However, conventional gas-sensing systems have limitations in monitoring fugitive gas leakages at both critical and subcritical concentrations in complex environments. To overcome these difficulties, recent studies in the field of gas sensors have employed techniques such as mobile robotic olfaction, remote optical sensing, chemical grid sensing, and remote acoustic sensing. This review highlights the significant progress made in various technologies that have enabled accurate and real-time mapping of gas distribution and localization of hazardous gas sources. These recent advancements in gas-sensing technology have shed light on the future role of gas-detection systems in industrial safety.

A Study on Fiber Optic Hydrophone with Double Interferometers for Optical Path Length Compensation

  • Kim, Jeong-suk;Yoon, Hyun-gyu;Seol, Jae-soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.25-30
    • /
    • 2002
  • We report on the development of a fiber optic hydrophone consists of a sensing Michelson interferometer and a compensating Mach-Zehnder interferometer for optical path length compensation. The double interferometer configuration has the following advantages: the hydrophone can be made more small; a laser source with a relatively short coherence length can be used; and the compensating interferometer can be located near the signal processing electronics, far away from the sensing interferometer and noise introduced by reference arm can be greatly reduced. The performance of the hydrophone is evaluated experimentally by immersing the sensing interferometer in a water tank to detect underwater acoustic signals generated by an acoustic wave projector. Experimental results show that over the frequency range of 1 to 4 kHz, the hydrophone has an almost flat response with an average normalized sensitivity of -302 dB re 1/ μ Pa.

Partial Discharge Monitoring Technology based on Distributed Acoustic Sensing (분포형 광음향센싱 기반 부분방전 모니터링 기술 연구)

  • Huioon, Kim;Joo-young, Lee;Hyoyoung, Jung;Young Ho, Kim;Myoung Jin, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.441-447
    • /
    • 2022
  • This study describes a novel method for detecting and measuring partial discharge (PD) on an electrical facility such as an insulated power cable or switchgear using fiber optic sensing technology, and a distributed acoustic sensing (DAS) system. This method has distinct advantages over traditional PD sensing techniques based on an electrical method, including immunity to electromagnetic interference (EMI), long range detection, simultaneous detection for multiple points, and exact location. In this study, we present a DAS system for PD detection with performance evaluation and experimental results in a simulated environment. The results show that the system can be applied to PD detection.