• Title/Summary/Keyword: Optical scintillation

Search Result 41, Processing Time 0.023 seconds

Impact of the Gain-saturation Characteristic of Erbium-doped Fiber Amplifiers on Suppression of Atmospheric-turbulence-induced Optical Scintillation in a Terrestrial Free-space Optical Communication System

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • We have evaluated the suppression effect of atmospheric-turbulence-induced optical scintillation in terrestrial free-space optical (FSO) communication systems using a gain-saturated erbium-doped fiber amplifier (EDFA). The variation of EDFA output signal power has been measured with different amounts of gain saturation and modulation indices of the optical input signal. From the measured results, we have found that the peak-to-peak power variation was decreased drastically below 2 kHz of modulation frequency, in both 3-dB and 6-dB gain compression cases. Then, the power spectral density (PSD) of optical scintillation has been calculated with Butterworth-type transfer function. In the calculation, different levels of atmospheric-turbulence-induced optical scintillation have been taken into account with different values of the Butterworth cut-off frequency. Finally, the suppression effect of optical scintillation has been estimated with the measured frequency response of the EDFA and the calculated PSD of the optical scintillation. From our estimated results, the atmospheric-turbulence-induced optical scintillation could be suppressed efficiently, as long as the EDFA were operated in a deeply gain-saturated region.

Mechanism analysis of Scintillation in Rear Projection TVs

  • KAGOTANI, Akihito;KAIZUKA, Tomoyoshi;IWATA, Satoshi;SHIMIZU, Yuichiro;MORONAGA, Kohei;TAKAHASHI, Susumu;MASUTOMI, Osamu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1239-1242
    • /
    • 2006
  • Scintillation that is grainy patterns appeared on a screen has been one of a biggest issues in a rear projection TVs. In this paper, with focusing on the average size of random particle, it was proved that the particle size of calculated speckle and the one of measured scintillation are almost the equal. This result shows speckle phenomenon is an important factor of scintillation.

  • PDF

PET Detector Design with a Small Number of Photo Sensors (적은 수의 광센서를 사용한 PET 검출기 설계)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.525-531
    • /
    • 2021
  • The detector of the positron emission tomography (PET) is composed using a plurality of scintillation pixels and photo sensors. The use of multiple photo sensors increases cost and complicates signal processing. In this study, a detector with reduced cost and simple signal processing was designed using a small number of photo sensors. A scintillation pixel and a small number of photo sensors were used, and a optical guide was used to deliver light to all the photo sensors. A reflector is applied to the scintillation pixel and the optical guide to transmit the maximum amount of light to the photo sensor. A diffuse reflector and a specular reflector were used for the reflector, and a flood image was obtained by applying different thicknesses of the optical guide. An optimal combination was selected through comparative analysis of the acquired flood images. As a result, when specular reflectors were used for both the scintillation pixel and the optical guide, excellent flood images were obtained from optical guides of all thicknesses. For the optical guide, the optimal image was obtained when using a 3 mm thickness in consideration of the size of the image and the analysis of the point where the image of the scintillation pixel was formed.

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.

BER Analysis of Coherent Free Space Optical Communication Systems with Holographic Modal Wavefront Sensor

  • Liu, Wei;Yao, Kainan;Huang, Danian;Cao, Jingtai;Wang, Liang;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Degradation of bit-error-rate (BER), caused by atmospheric turbulence, seriously hinders the performance of coherent Free Space Optical (FSO) communication systems. An adaptive optics system proves to be effective in suppressing the atmospheric turbulence. The holographic modal wavefront sensor (HMWFS) proposed in our previous work, noted for its fast detecting rates and insensitivity to beam scintillation, is applied to the coherent FSO communication systems. In this paper, based on our previous work, we first introduce the principle of the HMWFS in brief and give the BER of the coherent FSO with homodyne detection in theory, and then analyze the improvement of BER for a coherent FSO system based on our previous simulation works. The results show that the wavefront sensor we propose is better for weak atmospheric turbulence. The most obvious advantages of HMWFS are fast detecting rates and insensitivity to beam scintillation.

Measurement of Depth Dose Distribution Using Plastic Scintillator

  • Hashimoto, Masatoshi;Kodama, Kiyoyuki;Hanada, Takashi;Ide, Tatsuya;Tsukahara, Tomoko;Maruyama, Koichi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.244-247
    • /
    • 2002
  • We examined a possibility to use inorganic plastic scintillator, which has the effective atomic number close to that of human soft tissue, for the measurement of dose distributions in a shorter time period. The method was to irradiate a block of plastic scintillator as a phantom, and to measure the distribution of the scintillation light by a wave length analyzer through a thread of plastic optical fiber. By irradiating the diagnostic x-ray, we observed the emission spectrum of the scintillation light from the scintillator. It showed a peak at around 420nm with a full width of 140 nm. The emission spectrum was integrated to determine the total number of photons. The dependences of the amount of photons on the irradiated dose were measured. The results of the experiment show that the amount of emission light is in proportional to the irradiated dose. From this fact, we conclude that the present method can be used for the measurement of the depth dose distribution of the diagnostic x-rays.

  • PDF

Effects of Scintillation Crystal Surface Treatments on Gamma Camera Imaging (섬광체 옆표면처리가 감마카메라 영상에 미치는 효과)

  • Kim, J.H.;Choi, Y.;Oh, C.H.;Kim, J.Y.;Lee, M.Y.;Kim, S.E.;Choe, Y.S.;Joo, K.S.;Kim, B.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.303-304
    • /
    • 1998
  • We investigated the effects of scintillation crystal surface treatment on gamma camera imaging. The NaI(Tl) and CsI(Tl) (20 mm (dia.) $\times10mm$ (thick) plate) scintillators were chosen for this study. Two different surface treatments, white and black reflectors, were applied to NaI(Tl) and CsI(Tl). The optical properties of generated scintillation light were evaluated using Monte Carlo simulation and postion sensitive photo multiplier tube (PSPMT). We measured sensitivity, energy resolution and spatial resolution of a gamma camera system with the scintillators coupled to a PSPMT. Based on the results, we concluded that the careful consideration of surface treatments of the scintillator was necessary in order to develop the gamma camera having good sensitivity and spatial resolution.

  • PDF