• Title/Summary/Keyword: Optical profiler

Search Result 40, Processing Time 0.023 seconds

Precision Profile Measurement on Roughly Processed Surfaces (거친 가공표면 형상의 고정밀 측정법 개발)

  • Kim, Byoung-Chang;Lee, Se-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • We present a 3-D profiler specially devised for the profile measurement of rough surfaces that are difficult to be measured with conventional non-contact interferometer. The profiler comprises multiple two-point-diffraction sources made of single-mode optical fibers. Test measurement proves that the proposed profiler is well suited for the warpage inspection of microelectronics components with rough surface, such as unpolished backsides of silicon wafers and plastic molds of integrated-circuit chip package.

  • PDF

An Electrical Particle Velocity Profiler Using Particle Transit Time Across Uneven Inter-Gap Electrodes (비등간격 전극열에서의 입자 통과시간을 이용한 전기적 입자속도분포 검출기)

  • Kim, Tae-Yoon;Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.297-302
    • /
    • 2008
  • We present an electrical particle velocity profiler using particle transit time across uneven inter-gap electrodes. We measure both the particle position and velocity from the voltage signals generated by the particles passing across sensing electrodes, thus obtaining the velocity profile of the particles in a microfluidic channel. In the experimental study, we use polystyrene microparticles to characterize the performance of the electrical particle velocity profiler. The particle velocity profile is measured with the uncertainty of 5.44%, which is equivalent to the uncertainty of 5% in the previous optical method. We also experimentally demonstrate the capability of the present method for in-channel clogging detection. Compared to the previous optical methods, the present electrical particle velocity profiler offers the simpler structure, the cheaper cost, and the higher integrability to micro-biofluidic systems.

Measurements of Developed Patterns by Direct writing of Electron Beam on Different Materials underneath PMMA

  • June, Won-Chae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • The developed patterns by direct writing of electron beam are measured by AFM, FESEM and optical profiler of WYKO NT3300. From different measurement methods, the measured linewidths of the patterns are shown a little bit wider than designed pattern size due to electrons scattering effect during direct writing of electron beam. The optimized conditions of these experiments are suggested and explained for the forming of structures below 0.1 ㎛ dimension size. Because of electron scattering effects from the different under layers such as Si, Si$_3$N$_4$ and aluminum, the developed pattern size is also influenced by the accelerated energy of electrons, dose, resist and soft and hard bake conditions in PMMA. The distributions of electron beam and calculations of backscattering coefficient are demonstrated by Monte Carlo simulation. From the measured results, the developed linewidth of PMMA/Al /silicon is shown a little bit wider than that of PMMA/Si$_3$N$_4$/silicon structure due to the backscattering effects.

Endoscopic Precise 3D Surface Profiler Based on Continuously Scanning Structured Illumination Microscopy

  • Park, Hyo Mi;Joo, Ki-Nam
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.172-178
    • /
    • 2018
  • We propose a precise 3D endoscopic technique for medical and industrial applications. As the 3D measuring principle, the continuously scanning structured illumination microscopy (CSSIM), which enables to obtain 3D sectional images by the synchronous axial scanning of the target with the lateral scanning of the sinusoidal pattern, is adopted. In order to reduce the size of the probe end, the illumination and detection paths of light are designed as coaxial and a coherent imaging fiber bundle is used for transferring the illumination pattern to the target and vice versa. We constructed and experimentally verified the proposed system with a gauge block specimen. As the result, it was confirmed that the 3D surface profile was successfully measured with $16.1{\mu}m$ repeatability for a gauge block specimen. In order to improve the contrast of the sinusoidal illumination pattern reflected off on the target, we used polarizing optical components and confirmed that the visibility of the pattern was suitable in CSSIM.

Effect of scratches on optical connector interface surface on the insertion loss (광 커넥터 접합면의 스크래치가 삽입손실에 미치는 영향)

  • 윤영민;윤정현;김부균;신영곤;송국현
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • This paper presents the effect of scratches on an optical connector interface surface on the insertion loss of optical connectors. We propose a model for calculating the insertion loss of optical connectors. The model is expressed in terms of geometrical parameters of scratches assuming that the transmission coefficient of a light wave on the scratch surfaces is linearly varied as a function of scratch depth. Geometrical parameters of scratches such as location, width, and depth of scratches are measured using 3D optical interferometry surface profiler. We obtain the equation of the transmission coefficient in terms of scratch depth comparing the experimental insertion loss data to the insertion loss data using the model presented in this paper. Using the model and the equation of the transmission coefficient presented in this paper, we present the results of the insertion loss of optical connectors for various geometrical parameters of scratches. Scratches which are located at longer than two times the core radius from the center of the core show negligible effect on the insertion loss of optical connectors.

Flexure hinge mechanism having amplified rectilinear motion for confocal scanning microscopy using optical section

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.6-162
    • /
    • 2001
  • Confocal scanning microscopy (CSM) is an important instrument in a wide variety of imaging applications because of its ability to provide three-dimensional images of thick, volume specimens. The mechanism for two-dimensional beam scanning and optical sectioning has an important roe in CSM as the three-dimensional profiler. This optical sectioning property arises from the use of a point detector, which serves to attenuate the signals from out-of-focus. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. Thorough design of optical sectioner is crucial to the success of CSM in the field ...

  • PDF

3D-Surface Optical Profiler: General Introduction of WLI and Its Applications (광학기반의 3차원 표면 분석기: 백색광 간섭계의 기본 원리와 다양한 측정 응용 분야)

  • Kim, Ji-Ung;Choe, Dong-Hwan;Song, Mu-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.76-92
    • /
    • 2016
  • 산업이 고도화될수록 높은 품질과 보다 정밀하게 가공된 제품의 안정된 생산이 요구되고 있으며, 그에 대한 표준화된 측정법 및 관리법이 요구되고 있다. 산업체에서 생산되는 다양한 형태의 제품들 중, 마이크로메타 또는 나노메타 수준의 정밀한 가공 및 측정에 있어서, 정확하고 일관성 있게 빠른 시간 안에 제품분석을 수행 할 수 있는 방법은 오래 전부터 활발히 연구되고 있으며, 그 중 광학 기반의 3D-profiler 는 빠른 속도와 간편한 사용으로 많은 인기를 얻고 있다. 이러한 분석법은 광학 현미경의 평면 분해능을 가지고, 나노크기의 물체 높이를 판별하여, 측정된 정보를 3차원 이미지로 형태를 재 구성할 수 있어, 미세한 표면 조도 변화나 나노 수준의 패턴 단차에 대한 정보를 간단하게 얻을 수 있다. 또한 빛의 간섭현상에 기초하여 시료 표면에 대한 정보를 얻기 때문에 원자단위 이하 수준의 측정 해상도를 가지게 된다. 표면의 칼라패턴에 대해서도 2D 평면 정보를 기초로, 다양한 색상의 패턴들에 대해 각각의 색에 따른 정확한 높이 분석 및 그 패턴 분리, 색깔과 매칭되는 3D 이미지 구현 등과 같은 분석이 가능하여, 이를 활용하여 다양한 분야에서 활발히 사용되고 있다. 실제 현장에서 측정된 다양한 3D 이미지를 소개하며, 이를 통해 광학 3D-Profiler에 대한 전반적인 성능 소개와 그 이해를 돕고자 한다.

  • PDF

Surface Measurement of Microstructures Using Optical Pick-up Based Scanner (광픽업 스캔 장치를 이용한 미소 구조물의 표면 측정)

  • Kim, Jae-Hyun;Park, Jung-Yul;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.73-76
    • /
    • 2010
  • The issue of inspection and characterization of microstructures has emerged as a major consideration in design, fabrication, and detection of MEMS devices. However, the conventional measurement techniques, including scanning electron microscopy (SEM) imaging, atomic force microscopy (AFM) scanning, and mechanical surface profiler, require often destructive process or may be difficult to measure with a wafer scale. In this paper, we characterize the surface profiles of microstructures using an optical scanner based on a DVD pick-up module. Scanning images of the microstructures are successfully generated using the intensity of reflected light from different depths of the surface profiles, based on the focus error signal (FES) from photodiodes. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and low cost, compared to conventional measurement techniques.

Development of an Electro-Optic Mooring System for Oceanographic Buoy

  • Keat, Kok-Choon;Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.176-181
    • /
    • 2009
  • This study is part of a project to develop and improve mooring systems for oceanographic use that include an electro-optical sensor, 1MHz Nortek Aquadopp Doppler Profiler and AIRMAR multipurpose Sensor. The adaption of Doppler current profilers to measure directional wave spectra has provided a new instrumentation approach to coastal and nearshore oceanographic studies. The HEIOB is developed are light weight and of a compact design, and can be easily installed in marine environment. Since there are no base station and gateways in marine environments, we selected CDMA and Orbcomm to send the data information. Therefore, the data can be sent by either e-mail service or Short Message Service (SMS). This paper will present some of scientific sensor results regarding real-time oceanographic and meteorological parameters such as wind spend, wind direction, wave direction, and etc. The modeling and test results highlight the engineering challenges associated with designing these systems for long lifetimes. It can also be used in future application to build wave observation buoy network in real-time using multiple ubiquitous buoys that share wave data and allow analysis of multipoint, multi-layer wave profiler.

Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler

  • Yoo, Hong-Ki;Lee, Seung-Woo;Kang, Dong-Kyun;Kim, Tae-Joong;Gweon, Dae-Gab;Lee, Suk-Won;Kim, Kwang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.3-7
    • /
    • 2006
  • Confocal scanning microscopy is a measurement technique used to observe micrometer and sub-micrometer features due to its high resolution, nondestructive properties, and 3D surface profiling capabilities. The design, implementation, and performance test of a confocal scanning microscopy system are presented in this paper. A short-wavelength laser (405 nm) and an objective lens with a high numerical aperture (0.95) were used to achieve the desired high resolution, while the x- and y-axis scans were implemented using an acousto-optic deflector and galvanomirror, respectively. An objective lens with a piezo-actuator was used to scan the z-axis. A spatial resolution of less than 138 nm was achieved, along with successful 3D surface reconstructions.