• Title/Summary/Keyword: Optical pattern

Search Result 1,132, Processing Time 0.024 seconds

Property of Optical Spectroscopy on the Lanthanum Tungstate doped Eu3+ Ion (Eu3+ 이온이 첨가된 란타넘텅스텐산화물의 분광학 특성)

  • Seo, Hyojin;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • $La_2W_3O_{12}:Eu^{3+}$ phosphors were prepared by solid state reaction method. The crystal structure was characterized by XRD pattern and ICSD card (78180). Luminescence properties of $La_2W_3O_{12}:Eu^{3+}$ are investigated by optical and laser-excitation spectroscopy in which emission and excitation spectra and time-resolved spectra are measured. The 1 mol % $Eu^{3+}$-doped $La_2W_3O_{12}$ phosphor exhibits broad excitation band peaking at 286 nm due to the ligand-to-metal charge transfer transition. The excitation lines due to the $^7F_0{\rightarrow}{^5D_4},{^5D_4},{^5L_6},{^5G_4},{^5D_3},{^5D_2}$ transitions of $Eu^{3+}$ are observed in the wavelength region 350-500 nm. The strong line emission is observed at 618 nm corresponding to the due to the $^5D_0{\rightarrow}^7F_2$ transition. The lifetime of 618 nm emission decreases with increasing temperature as 7 K ($114{\mu}s$), 100 K ($94{\mu}s$), 200 K ($10{\mu}s$) and 300 K ($0.5{\mu}s$).

Fabrication and analysis of $1.3\mum$ spot-size-converter integrated laser diodes (광모드변환기가 집적된 $1.3\mum$ SC-FP-LD 제작 및 특성 해석)

  • 심종인
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.271-278
    • /
    • 2000
  • We have fabricated and analyzed the lasing characteristics of 1.3$\mu\textrm{m}$ Spot-Size-Converter (SSC) integrated Fabry-Perot (FP) laser diodes, which are very promising light sources for optical subscriber networks. SSC-LDs has been developed by BIB (buttjoint-built-in) coupling and selective MOVPE growth. High-performances were achieved such as the slope efficiency from the SSC facet of 0.23-0.32 mW/mA, the full-width at the half maximum of the far-field pattern (FFP) of 9.5$^{\circ}$~12.3$^{\circ}$, the alignment tolerances of $\pm$2.3$\mu\textrm{m}$ and $\pm$2.5$\mu\textrm{m}$ within the extra-coupling loss of 1 dB for the vertical and parallel directions, respectively. These experimental results were compared to theoretical ones in order to clarify the operational problems and give a good design direction of the fabricated SSC-LDs. It was revealed that an asymmetric output power from the facets, an irrelevancy of FFP and the waveguide structure around SSC facet region, and a poor temperature characteristics were originated from the scattering in the BIB and SSC sections and SHB effect in the active section for the first time.t time.

  • PDF

A Study on Depth Data Extraction for Object Based on Camera Calibration of Known Patterns (기지 패턴의 카메라 Calibration에 기반한 물체의 깊이 데이터 추출에 관한 연구)

  • 조현우;서경호;김태효
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.173-176
    • /
    • 2001
  • In this thesis, a new measurement system is implemented for depth data extraction based on the camera calibration of the known pattern. The relation between 3D world coordinate and 2D image coordinate is analyzed. A new camera calibration algorithm is established from the analysis and then, the internal variables and external variables of the CCD camera are obtained. Suppose that the measurement plane is horizontal plane, from the 2D plane equation and coordinate transformation equation the approximation values corresponding minimum values using Newton-Rabbson method is obtained and they are stored into the look-up table for real time processing . A slit laser light is projected onto the object, and a 2D image obtained on the x-z plane in the measurement system. A 3D shape image can be obtained as the 2D (x-z)images are continuously acquired, during the object is moving to the y direction. The 3D shape images are displayed on computer monitor by use of OpenGL software. In a measuremental result, we found that the resolution of pixels have $\pm$ 1% of error in depth data. It seems that the error components are due to the vibration of mechanic and optical system. We expect that the measurement system need some of mechanic stability and precision optical system in order to improve the system.

  • PDF

Effect of the HVAC Conditions on the Smoke Ventilation Performance and Habitability for a Main Control Room Fire in Nuclear Power Plant (원자력발전소 주제어실 화재 시 공조모드가 배연성능 및 거주성에 미치는 영향 분석)

  • Kim, Beom-Gyu;Lim, Heok-Soon;Lee, Young-Seung;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This study evaluated the habitability of operators for main control room fires in nuclear power plants. Fire modeling (FDS v.6.0) was utilized for a fire safety assessment so that it could determine the performance of the smoke ventilation and operator habitability with the main control room. For this study, it categorized fire scenarios into three cases depending on the conditions in the HVAC system. As a result of fire modelling, it showed that Case 1 (with HVAC) would give rise to the worst situation associated with the absolute temperature, radiative heat flux, optical density, and smoke layer height as deliberating the habitability and smoke ventilation. On the other hand, it showed that Cases 2 (w/o HVAC) and 3 can maintain much safer situations than Case 1. In the case of temperature at 820 s, Cases 2 and 3 were up to approximately 63% greater than Case 1 in the wake of ignition. In addition, the influence of radiative heat flux of Case 1 was even larger than Cases 2 and 3. That is, the radiative heat fluxes of Cases 2 and 3 were approximately 68% higher than Case 1. Furthermore, when it comes to considering the optical density, Case 1 was approximately 93% greater than Cases 2 and 3. Accordingly, it expected that the HVAC system can influence a the performance on the smoke ventilation that can be sustainable for operator habitability. On the other hand, it revealed an inconsecutive pattern for the smoke layer height of Cases 2 and 3 because supply vents and exhaust vents were installed within the same surface.

HMM-based Intent Recognition System using 3D Image Reconstruction Data (3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템)

  • Ko, Kwang-Enu;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • The mirror neuron system in the cerebrum, which are handled by visual information-based imitative learning. When we observe the observer's range of mirror neuron system, we can assume intention of performance through progress of neural activation as specific range, in include of partially hidden range. It is goal of our paper that imitative learning is applied to 3D vision-based intelligent system. We have experiment as stereo camera-based restoration about acquired 3D image our previous research Using Optical flow, unscented Kalman filter. At this point, 3D input image is sequential continuous image as including of partially hidden range. We used Hidden Markov Model to perform the intention recognition about performance as result of restoration-based hidden range. The dynamic inference function about sequential input data have compatible properties such as hand gesture recognition include of hidden range. In this paper, for proposed intention recognition, we already had a simulation about object outline and feature extraction in the previous research, we generated temporal continuous feature vector about feature extraction and when we apply to Hidden Markov Model, make a result of simulation about hand gesture classification according to intention pattern. We got the result of hand gesture classification as value of posterior probability, and proved the accuracy outstandingness through the result.

A Study on Optical Condition and preprocessing for Input Image Improvement of Dented and Raised Characters of Rubber Tires (고무타이어 문자열 입력영상 개선을 위한 전처리와 광학조건에 관한 연구)

  • 류한성;최중경;권정혁;구본민;박무열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.124-132
    • /
    • 2002
  • In this paper, we present a vision algorithm and method for input image improvement and preprocessing of dented and raised characters on the sidewall of tires. we define optical condition between reflect coefficient and reflectance by the physical vector calculate. On the contrary this work will recognize the engraved characters using the computer vision technique. Tire input images have all most same grey levels between the characters and backgrounds. The reflectance is little from a tire surface. therefore, it's very difficult segment the characters from the background. Moreover, one side of the character string is raised and the other is dented. So, the captured images are varied with the angle of camera and illumination. For optimum Input images, the angle between camera and illumination was found out to be with in 90$^{\circ}$. In addition, We used complex filtering with low-pass and high-pass band filters to improve input images, for clear input images. Finally we define equation reflect coefficient and reflectance. By doing this, we obtained good images of tires for pattern recognition.

Improvement of Optical Characteristics in Viewing Directions in a Reflective Cholesteric Liquid Crystal Color Filter (반사형 콜레스테릭 칼라필터의 시야각에 따른 광특성 향상에 관한 연구)

  • Kim, Tae-Hyun;Lim, Young-Jin;Hwang, Seong-Jin;Lee, Myong-Hoon;Jang, Won-Gun;Lee, Seung-Hee
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.148-152
    • /
    • 2007
  • The prototype of color fitters for the liquid crystal displays (LCD) using cholesteric liquid crystal monomers was produced. Cholesteric liquid crystal is characterized by the unique optical features of selective reflection, which is due to the helical twisting structures of LCs comparable to the wavelength of the incident light under certain conditions of substrate treatment. In the results of the experiment, cholesteric films for red, green, and blue light reflections respectively were produced and the viewing angle dependence of these films were investigated. Reflective light of red and green films shifted to shorter wavelength regions as viewing angle becomes greater, but blue one shifted very little. Periodic micrometer-sized half-spherical photoresist formed by thermal reflow method after photo-lithography was patterned on glass substrates. The viewing angle dependence of reflective light colors of red, green, and blue films on the patterned substrates compared with those on no patterned substrates was investigated. We could confirm the dependences were much smaller on the patterned substrates by bare eyes and Lab-color coordination methods qualitatively.

Fabrication and characterization of InGaAsP/InP multi-quantum well buried-ridge waveguide laser diodes (Buried-Ridge Waveguide Laser Diode 제작 및 특성평가)

  • 오수환;이지면;김기수;이철욱;고현성;박상기
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.669-673
    • /
    • 2003
  • We fabricated a buried-ridge waveguide laser diode (B-RWG LD) which has more advantages for obtaining lateral single mode operation on the same ridge width and for the planarization of the device surface, compared to the conventional RWG LD. In this LD, the difference of the lateral effective refractive index can be controlled by the thickness of the InGaAsP layer which is grown on the active and the p-InP layers. The InGaAsP multiple quantum well was grown on a n-InP substrate by the CBE. The buried ridge structure was formed by selective wet etchings, followed by liquid phase epitaxy methods. The fabricated LD with the ridge width of 7 ${\mu}{\textrm}{m}$ showed a linear increase of the optical power up to 20 ㎽ without any kinks and a saturated output power of more than 80 ㎽. By measuring the far field pattern, we demonstrate that LDs with the ridge widths of 5 ${\mu}{\textrm}{m}$ and 7 ${\mu}{\textrm}{m}$ were operated in a lateral single mode up to 2.7I$_{th}$ and 2.4I$_{th}$, respectively.ely.

Image Watermark Method Using Multiple Decoding Keys (다중 복호화 키들을 이용한 영상 워터마크 방법)

  • Lee, Hyung-Seok;Seo, Dong-Hoan;Cho, Kyu-Bo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.262-269
    • /
    • 2008
  • In this paper, we propose an image watermark method using multiple decoding keys. The advantages of this method are that the multiple original images are reconstructed by using multiple decoding keys in the same watermark image, and that the quality of reconstructed images is clearly enhanced based on the idea of Walsh code without any side lobe components in the decoding process. The zero-padded original images, multiplied with random-phase pattern to each other, are Fourier transformed. Encoded images are then obtained by taking the real-valued data from these Fourier transformed images. The embedding images are obtained by the product of independent Walsh codes, and these spreaded phase-encoded images which are multiplied with new random-phase images. Also we obtain the decoding keys by multiplying these random-phase images with the same Walsh code images used in the embedding images. A watermark image is then made from the linear superposition of the weighted embedding images and a cover image, which is multiplied with a new independent Walsh code. The original image is simply reconstructed by the inverse-Fourier transform of the despreaded image of the multiplication between the watermark image and the decoding key. Computer simulations demonstrate the efficiency of the proposed watermark method with multiple decoding keys and a good robustness to the external attacks such as cropping and compression.

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.