• 제목/요약/키워드: Optical orbital angular momentum

검색결과 6건 처리시간 0.02초

Acousto-optic generation of orbital angular momentum states of light in a tapered optical fiber

  • Song, Changkeun;Park, Hee Su;Song, Kwang Yong;Kim, Byoung Yoon
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1441-1446
    • /
    • 2018
  • We demonstrate an acousto-optic mode converter based on a tapered optical fiber to efficiently generate orbital angular momentum states of light. In our scheme an acoustic wave is deployed to the waist of tapered optical fiber where two degenerate $HE_{21}$ modes leading to +1 and -1 orbital angular momentum eigen-modes are resonantly excited. The excitation of $TM_{01}$ and $TE_{01}$ modes is suppressed by enlarging the intermodal index difference between near-degenerate spatial modes. Numerical calculation for optimization of the taper diameter is provided. The experimental characterization of generated states is performed by analyzing the output far-field pattern and the spatial interference fringes with a uniform reference beam.

Directional Orbital Angular Momentum Generator with Enhanced Vertical Emission Efficiency

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • 제3권4호
    • /
    • pp.292-297
    • /
    • 2019
  • We propose a ring resonator-based orbital angular momentum carrying vortex beam generator design with high vertical directional emission efficiency. By adopting a vertically asymmetric grating structure in the ring resonator, optimized for enhanced vertical emission, an emission efficiency in one direction reaches as high as 78%, exceeding the 50% theoretical limit of previously designed vertically symmetric grating-assisted ring resonator-based structures.

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan;Kim, Soeun
    • Current Optics and Photonics
    • /
    • 제3권4호
    • /
    • pp.298-303
    • /
    • 2019
  • We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.

3층 구조를 가지는 광 집적회로용 2차 궤도 각운동량 광 도파로 (A Three-layered Optical Waveguide of Second-order Orbital Angular Momentum Mode Guiding for Photonic Integrated Circuit)

  • 이인준;김상인
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.645-650
    • /
    • 2019
  • 본 논문에서는 기존의 l=1 궤도 각운동량 모드에 대해서만 연구가 이루어지던 광 도파로 구조를 개선하여 반도체 박막 공정으로 제작이 가능하고, l=1 및 l=2 궤도 각운동량 모드를 전송할 수 있는 광 집적회로용 실리콘 광 도파로를 유한차분법을 통하여 설계하였다. 설계된 광 도파로는 여러 층의 실리콘과 실리콘 산화막으로 이루어져 있으며, 두 고유 모드의 합성을 통하여 궤도 각운동량을 가지는 모드를 구현한다. 제안된 광 도파로의 2차 궤도 각운동량 모드의 전기장 분포를 통한 궤도 각운동량 계산 결과, 궤도 각운동량 양자수가 1차 및 2차 각각 l= 0.9642, 1.8766으로 이론치에 매우 근접한 값을 보였다.

Chirality in Non-Hermitian Photonics

  • Yu, Sunkyu;Piao, Xianji;Park, Namkyoo
    • Current Optics and Photonics
    • /
    • 제3권4호
    • /
    • pp.275-284
    • /
    • 2019
  • Chirality is ubiquitous in physics and biology from microscopic to macroscopic phenomena, such as fermionic interactions and DNA duplication. In photonics, chirality has traditionally represented differentiated optical responses for right and left circular polarizations. This definition of optical chirality in the polarization domain includes handedness-dependent phase velocities or optical absorption inside chiral media, which enable polarimetry for measuring the material concentration and circular dichroism spectroscopy for sensing biological or chemical enantiomers. Recently, the emerging field of non-Hermitian photonics, which explores exotic phenomena in gain or loss media, has provided a new viewpoint on chirality in photonics that is not restricted to the traditional polarization domain but is extended to other physical quantities such as the orbital angular momentum, propagation direction, and system parameter space. Here, we introduce recent milestones in chiral light-matter interactions in non-Hermitian photonics and show an enhanced degree of design freedom in photonic devices for spin and orbital angular momenta, directionality, and asymmetric modal conversion.