• Title/Summary/Keyword: Optical orbital angular momentum

Search Result 6, Processing Time 0.018 seconds

Acousto-optic generation of orbital angular momentum states of light in a tapered optical fiber

  • Song, Changkeun;Park, Hee Su;Song, Kwang Yong;Kim, Byoung Yoon
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1441-1446
    • /
    • 2018
  • We demonstrate an acousto-optic mode converter based on a tapered optical fiber to efficiently generate orbital angular momentum states of light. In our scheme an acoustic wave is deployed to the waist of tapered optical fiber where two degenerate $HE_{21}$ modes leading to +1 and -1 orbital angular momentum eigen-modes are resonantly excited. The excitation of $TM_{01}$ and $TE_{01}$ modes is suppressed by enlarging the intermodal index difference between near-degenerate spatial modes. Numerical calculation for optimization of the taper diameter is provided. The experimental characterization of generated states is performed by analyzing the output far-field pattern and the spatial interference fringes with a uniform reference beam.

Directional Orbital Angular Momentum Generator with Enhanced Vertical Emission Efficiency

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.292-297
    • /
    • 2019
  • We propose a ring resonator-based orbital angular momentum carrying vortex beam generator design with high vertical directional emission efficiency. By adopting a vertically asymmetric grating structure in the ring resonator, optimized for enhanced vertical emission, an emission efficiency in one direction reaches as high as 78%, exceeding the 50% theoretical limit of previously designed vertically symmetric grating-assisted ring resonator-based structures.

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan;Kim, Soeun
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.298-303
    • /
    • 2019
  • We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.

A Three-layered Optical Waveguide of Second-order Orbital Angular Momentum Mode Guiding for Photonic Integrated Circuit (3층 구조를 가지는 광 집적회로용 2차 궤도 각운동량 광 도파로)

  • Lee, In-Joon;Kim, Sang-In
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.645-650
    • /
    • 2019
  • In this paper, a specifically designed waveguide structure that can carry first, and second-order orbital angular momentum(: OAM) mode is proposed. The proposed optical waveguide consists of three Si stripes embedded in $SiO_2$, which is suitable for implementing on-chip integration and fabrication by standard thin film deposition and etching processes. The second-order OAM mode was generated by combining two eigenmodes, which are calculated by finite difference method(: FDM). The topological charge number of the first, and second-order OAM mode was calculated as l=0.9642 and 1.8766 respectively, which is close to the theoretical value.

Chirality in Non-Hermitian Photonics

  • Yu, Sunkyu;Piao, Xianji;Park, Namkyoo
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.275-284
    • /
    • 2019
  • Chirality is ubiquitous in physics and biology from microscopic to macroscopic phenomena, such as fermionic interactions and DNA duplication. In photonics, chirality has traditionally represented differentiated optical responses for right and left circular polarizations. This definition of optical chirality in the polarization domain includes handedness-dependent phase velocities or optical absorption inside chiral media, which enable polarimetry for measuring the material concentration and circular dichroism spectroscopy for sensing biological or chemical enantiomers. Recently, the emerging field of non-Hermitian photonics, which explores exotic phenomena in gain or loss media, has provided a new viewpoint on chirality in photonics that is not restricted to the traditional polarization domain but is extended to other physical quantities such as the orbital angular momentum, propagation direction, and system parameter space. Here, we introduce recent milestones in chiral light-matter interactions in non-Hermitian photonics and show an enhanced degree of design freedom in photonic devices for spin and orbital angular momenta, directionality, and asymmetric modal conversion.