• Title/Summary/Keyword: Optical observation

Search Result 761, Processing Time 0.058 seconds

CURRENT STATUS OF THE INSTRUMENTS, INSTRUMENTATION AND OPEN USE OF OKAYAMA ASTROPHYSICAL OBSERVATORY

  • YOSHIDA MICHITOSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.117-120
    • /
    • 2005
  • Current instrumentation activities and the open user status of Okayama Astrophysical Observatory (OAO) are reviewed. There are two telescopes in operation and one telescope under reforming at OAO. The 188cm telescope is provided for open use for more than 200 nights in a year. The typical over-subscription rate of observation proposals for the 188cm telescope is ${\~}$ 1.5 - 2. The 50cm telescope is dedicated to $\gamma$-ray burst optical follow-up observation and is operated in collaboration with Tokyo Institute of Technology. The 91cm telescope will become a new very wide field near-infrared camera in two years. The high-dispersion echelle spectrograph (HIDES) is the current primary instrument for the open use of the 188cm telescope. Two new instruments, an infrared multi-purpose camera (ISLE) and an optical low-dispersion spectrograph (KOOLS), are now under development. They will be open as common use instruments in 2006.

Alignment estimation performance of Multiple Design Configuration Optimization for three optical systems

  • Oh, Eun-Song;Kim, Seong-Hui;Kim, Yun-Jong;Lee, Han-Shin;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.31.1-31.1
    • /
    • 2011
  • In this study, we investigated alignment state estimation performances of the three methods i.e. merit function regression (MFR), differential wavefront sampling (DWS) and Multiple Design Configuration Optimization (MDCO). The three target optical systems are 1) a two-mirror Cassegrain system for deep space Earth observation, 2) intermediate size three-mirror anastigmat for Earth ocean monitoring, and 3) extremely large segmented optical system for astronomical observation. We ran alignment state estimation simulation for several alignment perturbation cases including 1mm to 10mm in decenter and from 0.1 to 1 degree in tilt perturbation error for the two-mirror Cassegrain system. In general, we note that MDCO shows more competitive estimation performance than MFR and DWS. The computational concept, case definition and the simulation results are discussed with implications to future works.

  • PDF

Design Variable Analysis of Space Optical Tracking System Using Modeling and Simulation (모델링 및 시뮬레이션을 활용한 우주 광학 추적 시스템 설계 변수 분석)

  • Chul Hyun;Jae Deok Jang;Hojin Lee;Hyun Seung Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.1
    • /
    • pp.76-84
    • /
    • 2024
  • This study investigates the design of an optical observation system for continuously tracking unknown space object targets within the telescope's field of view at a short cycle rate of several to tens of frames per second. Through modeling and integrated simulation by design variables, we aim to identify combinations that satisfy the performance effectiveness scale. The study demonstrates the effectiveness of a model-based simulation analysis approach in rapidly identifying design parameters that meet specific performance requirements. By leveraging numerical models tailored to the desired performance analysis level, the approach provides a robust foundation for decision-making, eliminating reliance on empirical methods or vague estimations.

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF

Development of Optical System for ARGO-M

  • Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Han, In-Woo;Han, Jeong-Yeol;Park, Kwijong;Lim, Hyung-Chul;Yu, Sung-Yeol;Park, Eunseo;Seo, Yoon-Kyung;Moon, Il-Kwon;Choi, Byung-Kyu;Na, Eunjoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.