• Title/Summary/Keyword: Optical nonlinearities

Search Result 34, Processing Time 0.019 seconds

Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry (방향 판별 분산간섭계의 최적 분산 조건 연구)

  • Yun, Young Ho;Kim, Dae Hee;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.259-264
    • /
    • 2017
  • Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

Non-linear optical properties of PECVD nanocrystal-Si nanosecond excitation (PECVD로 제조된 나노결정실리콘 비선형 광학적특성)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Kim, Joo Hoe;Kim, Chul Joong;Lee, Chang Gwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • A study of the non-linear optical properties of nanocrystal-Si embedded in SiO2 has been performed by using the z-scan method in the nanosecond and femtosecond ranges. Substoichiometric SiOx films were grown by plasma-enhanced chemical-vapor deposition(PECVD) on silica substrates for Si excesses up to 24 at/%. An annealing at $1250^{\circ}C$ for 1 hour was performed in order to precipitate nanocrystal-Si, as shown by EFTEM images. Z-scan results have shown that, by using 5-ns pulses, the non-linear process is ruled by thermal effects and only a negative contribution can be observed in the non-linear refractive index, with typical values around $-10-10cm^2/W$. On the other hand, femtosecond excitation has revealed a pure electronic contribution to the nonlinear refractive index, obtaining values in the order of 10-12 cm2/W. Simulations of heat propagation have shown that the onset of the temperature rise is delayed more than half pulse-width respect to the starting edge of the excitation. A maximum temperature increase of ${\Delta}T=123.1^{\circ}C$ has been found after 3.5ns of the laser pulse maximum. In order to minimize the thermal contribution to the z-scan transmittance and extract the electronic part, the sample response has been analyzed during the first few nanoseconds. By this method we found a reduction of 20% in the thermal effects. So that, shorter pulses have to be used obtain just pure electronic nonlinearities.

  • PDF

NRZ versus RZ Modulation Format in Lumped Dispersion Managed Systems (집중형 분산 제어 시스템에서 NRZ 변조 형식 대 RZ 변조 형식)

  • Lee, Seong-Real;Cho, Sung-Eon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.328-335
    • /
    • 2008
  • The system performance of NRZ format in WDM transmission system with lumped dispersion management(DM) and optical phase conjugator(OPC) is compared with that of RZ format. It is confirmed that eye opening penalty(EOP) of both NRZ and RZ format in WDM transmission system having lumped DM combined with OPC are greatly improved than those in WDM system with only OPC. The optimal net residual dispersion(NRD) in the case of RZ format is decided to so small value that path-averaged dispersion coefficient become almost zero, while that in the case of NRZ format is decided to larger value, for the best improvement of overall WDM channels. It is also confirmed that EOP in the case of RZ format is more improved than that in the case of NRZ format in lumped DM with optimal NRD. This is resulted from that lumped DM combined with OPC suppress the signal distortion due to intrachannel four-wave mixing(IFWM) and intrachannel cross phase modulation(IXPM). Consequently, lumped DM combined with OPC proposed in this paper is effective technique to mitigate intrachannel nonlinearities in WDM transmitting RZ format.

Characteristics of A Diaphragm-Type Fiber Optic Fabry-Perot Interferometric Pressure Sensor Using A Dielectric Film (유전체 박막을 이용한 다이아프램형 광섬유 Fabry-Perot 간섭계 압력센서의 특성)

  • Kim, M.G.;Yoo, Y.W.;Kwon, D.H.;Lee, J.H.;Kim, J.S.;Park, J.H.;Chai, Y.Y.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.147-153
    • /
    • 1998
  • The strain characteristics of a fiber optic Fabry-Perot pressure sensor with high sensitivity using a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ (N/O/N) diaphragm is experimentally investigated. A 600 nm thick N/O/N diaphragm was fabricated by silicon anisotropic etching technology in 44 wt% KOH solution. An interferometric fiber optic pressure sensor has been manufactured by using a fiber optic Fabry-Perot intereferometer and a N/O/N diaphragm. The 2 cm length fiber optic Fabry-Perot interferometers in the continuous length of single mode fiber were produced with two pieces of single mode fiber coated with $TiO_{2}$ dielectric film utilizing the fusion splicing technique. The one end of the fiber optic Fabry-Perot interferometer was bonded to a N/O/N diaphragm. and the other end was connected to an optical setup through a 3 dB coupler. For the N/O/N diaphragm sized $2{\times}2\;mm^{2}$ and $8{\times}8\;mm^{2}$, the pressure sensitivity was measured 0.11 rad/kPa and 1.57 rad/kPa, respectively, and both of the nonlinearities were less than 0.2% FS.

  • PDF