• Title/Summary/Keyword: Optical magnification

Search Result 109, Processing Time 0.033 seconds

Humor Expressed in Modern Fashion (현대 의상에 나타난 유머성)

  • 이윤진;박명희
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.33-48
    • /
    • 2003
  • The purpose of this study was to define the moaning and features of humor in modern fashion. by examining how it's being grafted into fashion, based on artistic expression including collage, assemblage, photo montage, graffiti, transformation, distortion, exaggeration and optical illusion. Beside. humor of fashion is to examine not only laugh and fun but also formative expression and creativity. Furthermore, it is to enlarge the range of conception for future fashion. The findings of this study could be described as below: The features of humorous fashion by collage and assemblage boiled down to unexpectedness, disharmony and creativity. The photo montage was marked by popularity, reproduction and recreativity, and graffiti was characterized by attention, simpleness, and amusement. And there were unexpectedness, creativity and strangeness in transformation, distortion, magnification and optical illusion. The meaning of humorous fashion that carries such features could eventually be summarized into the followings : First, the fashion, from which collage, assemblage, photo montage. graffiti, transformation, distortion, magnification and optical illusion were detected. could be sorted out into several categories that used different things : introduction of objects of different nature, dramatic impression and wit based on photo montage technique, introduction of comic components and infant image, and destruction of aesthetic principles. Second, the substance of humor in art could be applied to fashion design as well as visual art. Humor is a property related to accidental, unexpected incident, behavior, situation or idea, and it puts laugh, disharmony or awkwardness in fashion. Third, spicing fashion with humor could serve to draw people's attention, break down the barrier among people exposed to dry sentiment, and connect the public with art.

Design of Variable F-number and Triple Magnification Infrared Optical System (가변 F/수 삼중 배율 적외선 광학계 설계 연구)

  • Jeong, Yumee
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.153-162
    • /
    • 2021
  • In this article, the design of a variable F-number and triple magnification infrared optical system is described. That is a two-in-one optical system that combines an infrared search and track (IRST) system and an electro-optical tracking system (EOTS), where an afocal optical system is added to the IRST optical system designed already. The performance target is determined by analyzing system performance, and then the specification in the optical system design is calculated. This optical system contains a warm stop making it possible that one optics has two different F/# by cutting the size of aperture, and that is designed to suit this optics. The system satisfies the requirement such as a modulation transfer function (MTF). For operational assessment, the movement of the focusing lens group is analyzed over the change of temperature and target distance. By using this optical system, it is possible to develop equipment having two functions, infrared searching and electro-optical tracking.

Four-mirror optical system for UV submicron lithography (서브미크론 리소그라피를 이한 4 반사광학계의 설계)

  • 박성찬
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.81-87
    • /
    • 1991
  • A design of a four-mirror optical system for submicron lithography using KrF excimer laser beam(λ=248nm) is presented. By using the third order aberration theory, analytic solutions for a telecentric, flat-field, and anastigmatic four-spherical-mirror system (reduction magnification 5$\times$) are found. Aspherization is carried out to the spherical mirror surfaces in order to reduce the residual higher order aberrations and vignetting effect. Finally we obtain a reflection system useful in submicron lithographic application.

  • PDF

Development of Scope with Abbe-König Prism (아베-코닉 프리즘을 이용한 스코프 개발)

  • Lee, Dong-Hee;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.509-517
    • /
    • 2013
  • Purpose: The purpose of this study is developing the 2.6 ${\times}$ optical scope with a Abbe-K$\ddot{o}$nig prism. Methods: First, considering the size of the effective aperture and the focal length of the objective lens, we designed an Abbe-K$\ddot{o}$nig prism. Next, we calculated the optical and geometric distances of Abbe-K$\ddot{o}$nig prism designed in this way. After allocating the focal length of the objective lens and the eyepiece lens so as to satisfy the magnification and optical effective distance of the entire system by using this calculation result, we completed the entire system by optimizing this optical system. Results: We were able to complete the optical scope of about 2.6 ${\times}$ magnification by designing an objective lens with a focal length of 63.13 mm which was composed of two pieces, an eyepiece with a focal length of 24.3 mm which was composed of four pieces, and an Abbe-K$\ddot{o}$nig prism with a face length 11.5 mm. Conclusions: We designed and fabricated an optical scope with 2.6 ${\times}$ magnification employing an Abbe-K$\ddot{o}$nig prism. Then, this system became the compacted optical system with a barrel diameter of 31 mm, characterized by an effective aperture of 12.0 mm and an effective optical barrel length of 103 mm and a resolution of 200 cycles/rad at 50% MTF criterion within the half viewing field angle of $6.42^{\circ}$.

Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis (광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석)

  • Kim Jong-Ahn;Kim Jae-Wan;Park Byong-Chon;Kang Chu-Shik;Eom Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

Sensitivity Analysis and its Applications for Thermal Imaging Camera with Dual Magnification (이중배율 열상카메라에 대한 민감도 분석 및 응용)

  • 김현숙;김창우;김현규
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.104-105
    • /
    • 2003
  • 최근 열상장비의 수요가 점차 증가하고 있으며, 고성능 고밀도 적외선 검출기의 개발이 진전되면서 고 분해능 열상카메라의 개발이 가속화되고 있는 실정이다. 본 연구에서는 8$\mu\textrm{m}$~12$\mu\textrm{m}$ 파장대역에서 두 가지로 배율전환이 가능한 열상카메라를 설계하고 이에 대한 광학계의 민감도(sensitivity)를 분석하였다. 민감도 분석이란 이론적으로 설계된 광학계에 인위적으로 제작 및 조립상의 오차를 발생시켜서 광학계의 성능 변화를 예측하고 해석하는 일이다. (중략)

  • PDF

Design and fabrication of a zoom optics having 20 magnification range for mid-IR(3.7-4.8$\mu$m) FLIR system (3.7-4.8$\mu$m 파장대역 FLIR 시스템을 위한 20:1 줌 렌즈 광학계 설계 및 제작)

  • 김현숙;김창우;홍석민
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.462-467
    • /
    • 1999
  • This paper describes the design and fabrication of mid-IR $(3.7-4.8{\mu}m)$ zoom optics which is used for FUR (Forward Looking Infra-Red) system with 320 $\times$ 240 focal plane arrays. The zoom optics has 20 magnification range and maximun 40$^{\circ}$$\times$30$^{\circ}$ of super wide field of view. The locus of zoom is almost linear, which gives easy access of mechanical and electro-mechanical design. The on-axis MTF of zoom optics has been measured and it shows diffraction limited optical performance. For example, it gives 0.692 at 24 cycles/mm at highest magnification, and 7.6 cycles/mradof resolving power is achieved with the operation of attached micro-scanning system.system.

  • PDF

Design and Fabrication of a Step Height Certified Reference Material for Multi-probe Inspection Instruments (다중 프로브 검사 계측 장비를 위한 단차 표준 인증 물질의 설계 및 제작)

  • Maeng, Sae-Rom;Jin, Jong-Han;Buajarern, Jariya;Kim, Jae-Wan;Kim, Jong-Ahn;Kang, Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.323-329
    • /
    • 2011
  • Certified reference materials (CRMs) have been used to calibrate surface profilers for reliable measurements. In this paper, we present a newly designed step height CRM which has a step height pattern with two different widths and various special patterns for checking radial magnification, distortion of optical viewing systems, etc. Especially, it could be useful for multi-probe inspection instruments in the manufacturing lines. The fabrication was done by conventional optical lithography and dry etching process with optimized conditions. To verify the step height values, a white-light scanning interferometer was used with objective lenses having magnification of $10{\times}$ and $100{\times}$. CRMs with nominal step heights of $0.5\;{\mu}m$, $1\;{\mu}m$, $3\;{\mu}m$, $5\;{\mu}m$, $7\;{\mu}m$, and $10\;{\mu}m$ were fabricated and the uniformity of these CRMs was evaluated to be less than 3 nm ($1{\sigma}$).

Holosymmetric 4-Mirror Optical System(Unit Maginification) for Deep Ultraviolet Lithography Obtained from the Exact Solution of All Zero Third Order Aberrations (모든 3차 수차를 제거하여 얻은 극자외선 Lithography용 4-반사경 Holosymmetric System(배율=1))

  • 조영민
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.252-259
    • /
    • 1993
  • A holosymmetric four-mirror system with unit magnification is designed for use in the micro-lithography using a deep ultraviolet wavelength of $0.248 {\mu}m$(KrF excimer laser line). In the holosymmetric system all orders of coma and distortion are zero. By applying this principle to the 4-spherical mirror system, we have obtained only one exact solution for the unit magnification holosymmetric four-spherical mirror system with all zero third order aberrations. For correction of the residual higher order aberrations of the system, aspherization is introduced keeping the holosymmetric properties. We have obtained near diffraction-limited performance for the wavelength of 0.248 pm within N.A. of 0.33 and image field diameter of 7.6 mm.

  • PDF