• Title/Summary/Keyword: Optical line emission

Search Result 156, Processing Time 0.023 seconds

Use of In-Situ Optical Emission Spectroscopy for Leak Fault Detection and Classification in Plasma Etching

  • Lee, Ho Jae;Seo, Dong-Sun;May, Gary S.;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.395-401
    • /
    • 2013
  • In-situ optical emission spectroscopy (OES) is employed for leak detection in plasma etching system. A misprocessing is reported for significantly reduced silicon etch rate with chlorine gas, and OES is used as a supplementary sensor to analyze the gas phase species that reside in the process chamber. Potential cause of misprocessing reaches to chamber O-ring wear out, MFC leaks, and/or leak at gas delivery line, and experiments are performed to funnel down the potential of the cause. While monitoring the plasma chemistry of the process chamber using OES, the emission trace for nitrogen species is observed at the chlorine gas supply. No trace of nitrogen species is found in other than chlorine gas supply, and we found that the amount of chlorine gas is slightly fluctuating. We successfully found the root cause of the reported misprocessing which may jeopardize the quality of thin film processing. Based on a quantitative analysis of the amount of nitrogen observed in the chamber, we conclude that the source of the leak is the fitting of the chlorine mass flow controller with the amount of around 2-5 sccm.

THE SPECTROSCOPIC CHARATERISTICS OF 23 SYMBIOTICS (23개 공생별의 분광학적 특성)

  • KIM YEOJEONG;HYUNG SIEK;ALLER LAWRENCE H.
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.133-145
    • /
    • 2000
  • Symbiotic stars are known as binary systems with both cool and hot components with enshrounding nebulous gas. The cool component, M-type giant, is presumably loosing its mass into a hot white or main sequence companion star through the inner Lagrangian point. The lines emit from the ionized nebulous region around the hot star while the mass loss or accretion activity is believed to be the main cause of sudden variation of the continuum and line fluxes. We selected 17 symbiotics for which the emission line fluxes were measured from the IUE SWP, LWR data, to find variability of spectrum. We also investigated the periodic variation of emissions or eclipsing effect from the IUE lines. All of our symbiotics show very high electron densities in the emission regions. For other optical symbiotics, the observations had been carried in 1999 with BOAO mid-resolution spectrometer. We classified symbiotics based on their outburst activities, or emission line characteristics, i.e., $OVI{\lambda}6830.\;The\;OVI{\lambda}6830$ emission lines are also found in S-type symbiotics, which have been known as charateristics of D-types.

  • PDF

PHOTOIONIZATION MODELS OF THE WARM IONIZED MEDIUM IN THE GALAXY (우리은하 중온 이온화 매질의 광이온화 모델)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.89-95
    • /
    • 2007
  • The warm ionized medium (WIM) outside classical H II regions is a fundamental gas-phase constituent of the Milky Way and other late-type spiral galaxies, and is traced by faint emission lines at optical wavelengths. We calculate the photoionization models of the WIM in the Galaxy by a stellar UV radiation with the effective temperature 35,000 K assuming not only spherical geometry but also plane parallel geometry, and compare the results with the observed emission line ratios. We also show the dependence of the emission line ratios on various gas-phase abundances. The emergent emission-line ratios are in agreement with the average-values of observed ratios of [S II] ${\lambda}6716/H{\alpha}$, [N II] ${\lambda}6583/H{\alpha}$, [O I] ${\lambda}6300/H{\alpha}$, [O III] ${\lambda}5007/H{\alpha}$, He I ${\lambda}5876/H{\alpha}$. However, their extreme values could not be explained with the photoionization models. It is also shown that the addition of all stellar radiation from the OB stars in the Hipparcos stellar catalog resembles that of an O7-O8 type star.

THE CHROMOSPHERIC ACTIVITY ON V711 TAU (V711 TAU의 채층활동)

  • V771TAU의채층활동
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.59-66
    • /
    • 1997
  • The relationship between Mg II emission line and light variation of V711 Tau has been derived to investigate the chromospheric activity on V711 Tau. First, a shape of an optical light curve was compared with that of ultraviolet constructed from the IUE low resolution spectra. Second, the intensities of Mg II k emission lines have been reduced from IUE high resolution spectra. The intensity of Mg II k line was compared with brightness of the UV light curve at given phase. The Mg II line intensity is maximum at the phase $O.^{P}4$ where the light is minimum. The evidence of chromosperic activity is indicated by the intensity variation of the MgII emission line with orbital phase for V711 Tau.

  • PDF

Optical Long-slit Spectroscopy of Parsec-scale Jets from DG Tau

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2014
  • We present the result of a long-slit spectroscopic study of DG Tau, which is known to emanate parsec-scale outflows. To study the kinematics and physical properties of the jet, we obtained the optical emission lines of $H{\alpha}$, [OI], [NII], and [SII] from HH 158 and HH 702 using the long-slit spectrograph at Bohyunsan Optical Astronomical Observatory. HH 158 shows the peak radial velocity in a range of ~ - 270 to - 30 km s-1. HH 702, located at 11' away from DG Tau shows the velocity of ~ - 80 km s-1. The proper motion velocities of detected knots are estimated through the comparisons with the locations of those knots in the previous studies. We also examine the variations of physical parameters depending on the velocity distribution and the distance from the source using line ratio maps derived from obtained forbidden emission lines.

  • PDF

N III Bowen Lines and Fluorescence Mechanism in the Symbiotic Star AG Peg

  • Hyung, Siek;Lee, Seong-Jae;Lee, Kang Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.7-18
    • /
    • 2018
  • We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near ${\lambda}$ 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about $5km{\cdot}s^{-1}$ greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.

On the Nature of LINERs: A Clue from Keck/LRIS Observations

  • Bae, Hyun-Jin;Yagi, Masafumi;Woo, Jong-Hak;Yoshida, Michitoshi;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • Low-ionization nuclear emission-line regions (LINERs) have been generally regarded to be powered by active galactic nuclei (AGNs), yet still a number of alternative explanations on the origin of LINER emission are suggested; for example, planetary nebulae nuclei of massive stars, supernovae shocks from death of massive stars, and old stellar populations. Interestingly, a majority of recent star formation early-type galaxies (ETGs) in local universe presents such LINER emission lines. Given that situation, revealing the true nature of LINERs is a crucial step to constrain the evolution path to quiescent ETGs. To resolve the issue, we use Keck/LRIS to obtain spatially resolved spectra on a carefully selected ETG. The ETG SDSS J091628.05+420818.7 at redshift z ~ 0.024 shows modest LINER emission line features without any detection of 21 cm radio continuum nor X-ray emission. We perform a stellar continuum subtraction and measure emission line strengths and their uncertainties for each spectrum from five apertures along the slit with size of 1 arcsecond (~0.5 kpc). We find that extended spatial distributions of four emission lines $H{\alpha}$, $H{\beta}$, [OIII]${\lambda}5007$, and [NII]${\lambda}6583$, and they can be explained by central emission blurring effect. We conclude that the emissions seem to be centrally concentrated, indicating the AGN-nature of LINERs.

  • PDF

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

STRENGTH OF THE RAMAN SCATTERED HE II EMISSION LINES IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • In Lee, Kang & Byun (2001) the discovery of Raman scattered 6545 A feature was reported in symbiotic stars and the planetary nebula M2-9. The broad emission feature around 6545 A is formed as a result of Raman scattering of He II n = 6 $\to$ n = 2 photons by atomic hydrogen. In this paper, we introduce a method to compute the equivalent width of He II $\lambda$ 1025 line and present an optical spectrum of the symbiotic star RR Telescopii as an example for a detailed illustration. In this spectrum, we pay attention to the broad H$\alpha$ wings and the Raman scattered He II 6545 feature. The broad Ha wings are also proposed to be formed through Raman scattering of continuum around Ly$\beta$ by Lee (2000), and therefore we propose that the equivalent width of the He II $\lambda$ 1025 emission line is obtained by a simple comparison of the strengths of the 6545 feature and the broad H$\alpha$ wings. We prepare a template H$\alpha$ wing profile from continuum radiation around Ly$\beta$ with the neutral scattering region that is supposed to be responsible for the formation of Raman scattered He II 6545 feature. Isolation of the 6545 feature that is blended with [N II] $\lambda$ 6548 is made by using the fact that [N II] $\lambda$ 6584 is always 3 times stronger than [N II] $\lambda$ 6548. We also fit the 6545 feature by a Gaussian which has a width 6.4 times that of the He II $\lambda$ 6527 line. A direct comparison of these two features for RR Tel yields the equivalent width $EW_{Hel025} = 2.3{\AA}$ of He II $\lambda$ 1025 line. Even though this far UV emission line is not directly observable due to heavy interstellar extinction, nearby He II lines such as He II $\lambda$ 1085 line may be observed using far UV space instruments, which will verify this calculation and hence the origins of various features occurring in spectra around H$\alpha$.

The Origins of the Warm Ionized Medium/Diffuse Ionized Gas

  • Seon, Gwang-Il;Witt, Adolf
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2013
  • It is known that the diffuse $H{\alpha}$ emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] ${\lambda}6716/H{\alpha}$ and [N II] ${\lambda}6583/H{\alpha}$ observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse $H{\alpha}$ emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse $H{\alpha}$ emission. However, as opposed to the previous contention, the expected dust-scattered $H{\alpha}$ halos surrounding H II regions are, in fact, in good agreement with the observed $H{\alpha}$ morphology. We find that the observed line ratios of [S II]/$H{\alpha}$, [N II]/$H{\alpha}$, and He I ${\lambda}5876/H{\alpha}$ in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the $H{\alpha}$ absorption feature in the underlying continuum from the dust-scattered starlight ("diffuse galactic light") and unresolved stars is able to substantially increase the [S II]/$H{\alpha}$ and [N II]/$H{\alpha}$ line ratios in the diffuse ISM.

  • PDF