• Title/Summary/Keyword: Optical frequency stabilization

Search Result 52, Processing Time 0.016 seconds

Design and Implementation of Fuzzy-based Algorithm for Hand-shake State Detection and Error Compensation in Mobile OIS Motion Detector (모바일 OIS 움직임 검출부의 손떨림 상태 검출 및 오차 보상을 위한 퍼지기반 알고리즘의 설계 및 구현)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.29-39
    • /
    • 2015
  • This paper describes a design and implementation of fuzzy-based algorithm for hand-shake state detection and error compensation in the mobile optical image stabilization(OIS) motion detector. Since the gyro sensor output of the OIS motion detector includes inherent error signals, accurate error correction is required for prompt hand-shake error compensation and stable hand-shake state detection. In this research with a little computation overhead of fuzzy-based algorithm, the hand-shake error compensation could be improved by quickly reducing the angle and phase error for the hand-shake frequencies. Further, stability of the OIS system could be enhanced by the hand-shake states of {Halt, Little vibrate, Big vibrate, Pan/Tilt}, classified by subdividing the hand-shake angle. The performance and stability of the proposed algorithm in OIS motion detector is quantitatively and qualitatively evaluated with the emulated hand-shaking of ${\pm}0.5^{\circ}$, ${\pm}0.8^{\circ}$ vibration and 2~12Hz frequency. In experiments, the average error compensation gain of 3.71dB is achieved with respect to the conventional BACF/DCF algorithm; and the four hand-shake states are detected in a stable manner.

Cancellation of Phase Noise in 1.4 GHz RF Signal Transferred to a Remote Site through 13 km Fiber (13 km 광섬유를 통하여 원격지로 전송된 1.4 GHz RF 신호의 위상잡음 제거)

  • Lee, Won-Kyu;Park, Chang-Yong;Mun, Jong-Chul;Yu, Dai-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.103-110
    • /
    • 2010
  • A fiber-phase-noise compensating system was constructed for a 1.4 GHz reference frequency transferred through a 13-km-long fiber spool. The transfer instability was dependent on the temperature variation of the compensating system. With the room temperature variation stabilized within $0.3^{\circ}C$, the transfer instability was $4.6{\times}10^{-14}$ at 0.8 s of average time and $2.5{\times}10^{-16}$ at 1000 s of average time with the fiber phase noise compensated. However, with the room temperature changed by $3.5^{\circ}C$, the transfer instability was $6.8{\times}10^{-14}$ at 1.2 s of average time and $3.0{\times}10^{-15}$ at 1000 s of average time. From this result, the temperature stability condition for the experimental setup could be determined to obtain a transfer instability of $10^{-16}$ at 1000 s of average time.