• Title/Summary/Keyword: Optical frequency domain reflectometry

Search Result 7, Processing Time 0.021 seconds

Mode Analysis and Modal Delay Measurement of a Few-Mode Fiber by Using Optical Frequency Domain Reflectometry

  • Ahn Tae-Jung;Moon Sucbei;Youk Youngchun;Jung Yongmin;Oh Kyunghwan;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.54-58
    • /
    • 2005
  • A novel mode analysis method and differential mode delay measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. The differential mode delay (DMD) of the sample fiber was measured to be 16.58 ps/m with a resolution of 1.5 ps/m. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

Measurement of Hysteresis in PZT-Type Tunable Filters Utilizing OFDR (OFDR을 이용한 PZT형 파장가변 필터의 이력 측정)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2008
  • Implementation of a wavelength-swept source with constant tuning rate adopting a PZT-type tunable filter, requires the knowledge of hysteresis of the filter used. The hysteresis must be considered to avoid any degradation in resolution of the optical frequency domain reflectometry (OFDR) system. An optical spectrum analyzer (OSA) could be used to do the hysteresis measurement, but its measurement time is too long for the high-speed driving conditions for the filter. We proposed a new hysteresis measurement method based on OFDR, which could measure the hysteresis in a real driving condition. A hysteresis measurement apparatus consisted of wavelength-swept source, interferometer, signal processing unit, and PC program is built and used to do the measurement. It is concluded that the new method is useful in the measurement of hysteresis at real driving conditions by successfully implementing a swept-wavelength source whose wavelength change is linear in time.

Optical frequency domain reflectometry based on Wavelength swept mode locked fiber laser (Wavelength Swept 모드 록킹된 광섬유 레이저를 이용한 광주파수 영역에서 반사계)

  • 오명숙;박희수;김병윤
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.204-205
    • /
    • 2003
  • We demonstrate a novel OFDR system with compactness and short measurement time based on the use of a wavelength-swept mode-locked fiber laser. The optical source uses an intra-cavity tunable Fabry-Perot filter as a tuning element. The fiber laser sweeps 20 nm in less than 10 ms. Spatial resolution of 100 fm and total measurement range of several centimeters are demonstrate

  • PDF

100Gbps Ti: LiNbO$_3$ Optical Intensity Modulator (100Gbps Ti:LiNbO$_3$ 광강도 변조기)

  • 김성구;이한영;윤형도;임상규;구경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.282-285
    • /
    • 1999
  • Fabrication and pakaging method for low delve voltage and 10Gbps Ti diffused waveguide LiNbO$_3$ optical intensity modulator are described. Optical waveguides were prepared by conventionaly electron-beam evaporation and Ti-indiffusion into Z-cut plate LiNbO$_3$. Traveling-wave electrodes were used for obtaining the wideband frequency response and impedance matching. Microwave effective index and characteristic impedance measured by time domain reflectometry and compared with the calculated value by conformal mapping. The characteristics of 10Gbps modulator at the 1550nm wavelength are as follows : perfect modulation voltage Is about 5V, optical insertion loss Is about 5dB, 3-dB bandwidth is 10GHz, and characteristic impedance is about 50$\Omega$.

  • PDF

Distributed Monitoring Technology using Fiber-Optic Embedded Sensor (광섬유 임베디드 센서 기반 분포 모니터링 기술)

  • Kim, Youngwoong;Kim, Jong-Yeol;Ryu, Gukbeen;Hwang, Young-Gwan;Kim, Hyun-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.617-619
    • /
    • 2022
  • An embedded fiber-optic sensor was manufactured using 3D printing technology for distributed structural monitoring. Strain distribution of the embedded sensor was measured by the optical frequency domain reflectometry, and real-time data visualization for the embedded sensor model was demonstrated.

  • PDF

Characterizing the strain transfer on the sensing cable-soil interface based on triaxial testing

  • Wu, Guan-Zhong;Zhang, Dan;Shan, Tai-Song;Shi, Bin;Fang, Yuan-Jiang;Ren, Kang
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • The deformation coordination between a rock/soil mass and an optical sensing cable is an important issue for accurate deformation monitoring. A stress-controlled triaxial apparatus was retrofitted by introducing an optical fiber into the soil specimen. High spatial resolution optical frequency domain reflectometry (OFDR) was used for monitoring the strain distribution along the axial direction of the specimen. The results were compared with those measured by a displacement meter. The strain measured by the optical sensing cable has a good linear relationship with the strain calculated by the displacement meter for different confining pressures, which indicates that distributed optical fiber sensing technology is feasible for soil deformation monitoring. The performance of deformation coordination between the sensing cable and the soil during unloading is higher than that during loading based on the strain transfer coefficients. Three hypothetical strain distributions of the triaxial specimen are proposed, based on which theoretical models of the strain transfer coefficients are established. It appears that the parabolic distribution of specimen strain should be more reasonable by comparison. Nevertheless, the strain transfer coefficients obtained by the theoretical models are higher than the measured coefficients. On this basis, a strain transfer model considering slippage at the interface of the sensing cable and the soil is discussed.