• Title/Summary/Keyword: Optical force

Search Result 721, Processing Time 0.027 seconds

Design of Ball Bearing Type OIS Actuator for Mobile Camera Module (모바일 카메라 모듈용 볼베어링 방식 OIS 액추에이터 설계)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Lim, Soo-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.361-372
    • /
    • 2010
  • Optical image stabilization is a technique to compensate the image blurring caused by some vibrations of camera at the exposure time. Pitching and yawing of camera are sensitive to the image quality so they are usually compensated by optical image stabilization. Corresponding pitching and yawing of a camera, a lens or the image sensor is translated in two-axis direction and then the optical path of camera is adjusted. In this paper, two-axis OIS actuator for mobile camera module is suggested and designed. The actuator is a voice-coil actuator that uses the electromagnetic force of voice-coil to make compensation motions. And ball bearing is used to reduce friction force. Magnetic attractive force between magnets and yokes acts as a preload and magnet springs. Prototype actuator is fabricated to measure the friction force and to verify the feasibility of the OIS actuator with ball bearing. At last, the actuator is improved in consideration of driving force and friction force. Design of experiments is used for designing the actuator.

Calculations of the Trapping Force of Optical Tweezers using FDTD Method (FDTD 방법을 이용한 광집게의 포획 힘 계산)

  • Sung, Seung-Yong;Lee, Yong-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.80-83
    • /
    • 2008
  • Optical tweezers are a tool that can use a tightly focused laser beam to trap and manipulate micron-sized dielectric particles that are immersed in a medium with lower refractive index. In this paper, the calculation of the trapping force of optical tweezers is presented. A nonparaxial Gaussian beam is used to represent a tightly focused Gaussian beam, and the FDTD (Finite-Difference Time-Domain) method is used for computing the electromagnetic field distributions in the dielectric medium. Scattered-field formulation is used for analytical expression of the incident fields. Using the electromagnetic field distribution from FDTD simulation, the trapping force is calculated based on Maxwell's stress tensor.

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays (적외선용 광학소자의 초정밀 절삭특성)

  • Won, Jong-Ho;Park, Won-Kyoo;Kim, Ju-Hwan;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Lee, Jae-Sung;Kim, Sang-Hoon;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • A novel method to find interaction dynamics between focusing direction and tracking direction in an optical pick-up is proposed. and the decoupling control to reduce the interaction effect is discussed. First, the basic principle to detect dynamic interaction analysis using back electromotive force is introduced. Second, the interaction analysis between focusing and tracking direction of is analyzed for a commercial slim type optical pick-up. Finally. decoupling control process and its simulation results are shown.

  • PDF

The Characteristics of Ultra Precision Machining of Si and Ge (Si와 Ge의 초정밀 절삭특성)

  • 원종호;박상진;안병민;도철진;홍권희;김건희;유병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.775-778
    • /
    • 2000
  • Single point diamond turning technique fur optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of cur research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm. and feed rate is small. The influence of depth of cut is very small.

  • PDF

Scanning Probe Microscopy Study on the Degradation of Optical Recoding Disks by Environmental Factors (광디스크의 노화에 관한 주사 탐침 현미경 연구)

  • Yoon, Man-Young;Shin, Hyun-Chang
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2011
  • The storing ability of information of optical disks directly depends on the physical property of recording unit cells. It means that the degradation of optical disks ultimately causes the loss of the physical and chemical properties of recording unit cells and leads also information, too. We investigated the degradation and life time of optical disks which tell us the longevity of the preservation of information. Optical disks were aged using the accelerated aging system and studied by optical reflectivity spectroscopy and atomic force microscopy(AFM), and the preservation environment of electronic media in National central library of Korea also were analysed. Results show that the double reflective coated optical disks have good preservation of recording information but revealed some deformation of dye area in the AFM images. It means that we should include the mechanical and chemical degradation of the optical disks in the life time expectation evaluation.

Stiffness Comparison of Tissue Phantoms using Optical Coherence Elastography without a Load Cell

  • Chae, Yu-Gyeong;Park, Eun-Kee;Jeon, Min Yong;Jeon, Byeong-Hwan;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2017
  • Mechanical property of tissue is closely related to diseases such as breast cancer, prostate cancer, cirrhosis of the liver, and atherosclerosis. Therefore measurement of tissue mechanical property is important for a better diagnosis. Ultrasound elastography has been developed as a diagnostic modality for a number of diseases that maps mechanical property of tissue. Optical coherence elastography (OCE) has a higher spatial resolution than ultrasound elastography. OCE, therefore, could be a great help for early diagnosis. In this study, we made tissue phantoms and measured their compressive moduli with a rheometer measuring the response to applied force. Uniaxial strain of the tissue phantom was also measured with OCE by using cross-correlation of speckles and compared with the results from the rheometer. In order to compare stiffness of tissue phantoms by OCE, the applied force should be measured in addition to the strain. We, however, did not use a load cell that directly measures the applied force for each sample. Instead, we utilized one silicone film (called as reference phantom) for all OCE measurements that indirectly indicated the amount of the applied force by deformation. Therefore, all measurements were based on displacement, which was natural and effective for image-based elastography such as OCE.

Photonic Generation of Frequency-tripling Vector Signal Based on Balanced Detection without Precoding or Optical Filter

  • Qu, Kun;Zhao, Shanghong;Li, Xuan;Zhu, Zihang;Tan, Qinggui
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.134-139
    • /
    • 2018
  • A novel approach for frequency-tripling vector signal generation via balanced detection without precoding and optical filter is proposed. The scheme is mainly utilizing an integrated dual-polarization quadrature phase shift keying (DPQPSK) modulator. In the DPQPSK modulator, one QPSK modulator is driven by an RF signal to generate high-order optical sidebands, while the other QPSK modulator is modulated by I/Q data streams to produce baseband vector signal as an optical carrier. After that, a frequency-tripling 16-quadrature-amplitude-modulation (16QAM) vector millimeter-wave (mm-wave) signal can be obtained by balanced detection. The proposed scheme can reduce the complexity of transmitter digital signal processing. The results show that, a 4 Gbaud baseband 16QAM vector signal can be generated at 30 GHz by frequency-tripling. After 10 km single-mode fiber (SMF) transmission, the constellation and eye diagrams of the generated vector signal perform well and a bit-error-rate (BER) below than 1e-3 can be achieved.