• Title/Summary/Keyword: Optical film

Search Result 3,009, Processing Time 0.036 seconds

Electrical and Optical Properties of the GZO Transparent Conducting Layer Prepared by Magnetron Sputtering Technique (마그네트론 스퍼터링법으로 제작된 GZO 투명전도막의 전기적 및 광학적 특성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Lee, Kyung-Il;Kim, Sun-Min;Cho, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.110-115
    • /
    • 2010
  • Transparent conducting gallium-doped zinc oxide (GZO) thin films which were deposited on Corning glass substrate using an Gun-type rf magnetron sputtering deposition technology. The GZO thin films were fabricated with an GZO ceramic target (Zn : 97[wt%], $Ga_2O_3$ : 3[wt%]). The GZO thin films were deposited by varying the growth conditions such as the substrate temperature, oxygen pressure. Among the GZO thin films fabricated in this study, the one formed at conditions of the substrate temperature of 200[$^{\circ}C$], Ar flow rate of 50[sccm], $O_2$ flow rate of 5[sccm], rf power of 80[W] and working pressure of 5[mtorr] showed the best properties of an electrical resistivity of $2.536{\times}10^{-4}[{\Omega}{\cdot}cm]$, a carrier concentration of $7.746{\times}10^{20}[cm^{-3}]$, and a carrier mobility of 31.77[$cm^2/V{\cdot}S$], which indicates that it could be used as a transparent electrode for thin film transistor and flat panel display applications.

Solution Processed Porous Fe2O3 Thin Films for Solar-Driven Water Splitting

  • Suryawanshi, Mahesh P.;Kim, Seonghyeop;Ghorpade, Uma V.;Suryawanshi, Umesh P.;Jang, Jun Sung;Gang, Myeng Gil;Kim, Jin Hyeok;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.631-635
    • /
    • 2017
  • We report facile solution processing of mesoporous hematite (${\alpha}-Fe_2O_3$) thin films for high efficiency solar-driven water splitting. $Fe_2O_3$ thin films were prepared on fluorine doped tin oxide(FTO) conducting substrates by spin coating of a precursor solution followed by annealing at $550^{\circ}C$ for 30 min. in air ambient. Specifically, the precursor solution was prepared by dissolving non-toxic $FeCl_3$ as an Fe source in highly versatile dimethyl sulfoxide(DMSO) as a solvent. The as-deposited and annealed thin films were characterized for their morphological, structural and optical properties using field-emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and UV-Vis absorption spectroscopy. The photoelectrochemical performance of the precursor (${\alpha}-FeOOH$) and annealed (${\alpha}-Fe_2O_3$) films were characterized and it was found that the ${\alpha}-Fe_2O_3$ film exhibited an increased photocurrent density of ${\sim}0.78mA/cm^2$ at 1.23 V vs. RHE, which is about 3.4 times higher than that of the ${\alpha}-FeOOH$ films ($0.23mA/cm^2$ at 1.23 V vs. RHE). The improved performance can be attributed to the improved crystallinity and porosity of ${\alpha}-Fe_2O_3$ thin films after annealing treatment at higher temperatures. Detailed electrical characterization was further carried out to elucidate the enhanced PEC performance of ${\alpha}-Fe_2O_3$ thin films.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Properties of TiO2 thin films fabricated with surfactant by a sol-gel method (Sol-gel 법에 의하여 제조된 계면활성제 첨가 TiO2 박막 특성)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Cho, Yong-Seok;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.267-271
    • /
    • 2010
  • Super hydrophilic and high transparent $TiO_2$ thin films were successfully fabricated by sol-gel method without an irradiation of UV light. In addition, surfactant Tween 80 was used for increasing the transmittance of the thin films. When the contents of Tween 80 in $TiO_2$ solution were 0.0, 1.0, 3.0, 5.0 wt%, the transmittance of $TiO_2$ thin films was ca. 74.31%, 74.25%, 79.69%, 81.99% at 550 nm wavelength, respectively. The contact angles of fabricated $TiO_2$ thin films with or without Tween 80 were from ca. $4.0^{\circ}$ to $4.5^{\circ}$. The $TiO_2$ thin films annealed over $400^{\circ}C$ showed anatase crystal structure and the photocatalytic property that decomposed methyl orange with UV irradiation. The surface morphologies, optical properties and contact angle of prepared thin films with different contents of Tween 80 were evaluated by field emission scanning electron microscope (FE-SEM), X-ray diffratometer (XRD), UV-Vis spectrophotometer and contact angle meter.

Electrical Properties of Transparent Conductive Films of Single-Walled Carbon Nanotubes with Their Purities

  • Lee, Seung-Ho;Goak, Jeung-Choon;Lee, Chung-Yeol;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.56-56
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as a promising material for transparent conducting films (TCFs), due to their superior electrical conductivity, high mechanical strength, and complete flexibility as well as their one-dimensional morphological features of extremely high length-to-diameter ratios. This study investigated three kinds of SWCNTs with different purities: as-produced SWCNTs (AP-SWCNTs), thermally purified SWCNTs (TH-SWCNTs), thermally and acid purified SWCNTs (TA-SWCNTs). The purity of each SWCNT sample was assessed by considering absorption peaks in the semiconducting ($S_{22}$) and metallic ($M_{11}$) tubes with UV-Vis NIR spectroscopy and a metal content with thermogravimetric analysis (TGA). The purity increased as proceeding the purification stages from the AP-SWCNTs through the thermal purification to the acid purification. The samples containing different contents of SWCNTs were dispersed in water using sodium dodecyl benzensulfate (SDBS). Aqueous suspensions of different purities of SWCNTs were prepared to have similar absorbances in UV-Vis absorption measurements so that one can make the TCFs possess similar optical transmittances irrespective of the SWCNT purity. Transparent conductive SWCNT networks were formed by spraying an SWCNT suspension onto a poly(ethyleneterephthalate) (PET) substrate. As expected, the TCFs fabricated with AP-SWCNTs showed very high sheet resistances. Interestingly, the TH-SWCNTs gave lower sheet resistances to the TFCs than the TA-SWCNTs although the latter was of higher purity in the SWCNT content than the former. The TA-SWCNTs would be shortened in length and be more bundled by the acid purification, relative to the TH-SWCNTs. For both purified (TH, TA) samples, the subsequent nitric acid ($HNO_3$) treatment greatly lowered the sheet resistances of the TCFs, but almost eliminated the difference of sheet resistances between them. This seems to be because the electrical conductivity increased not only due to further removal of surfactants but also due to p-type doping upon the acid treatment. The doping effect was likely to overwhelm the effect of surfactant removal. Although the nitric acid treatment resulted in the similar. electrical properties to the two samples, the TCFs of TH-SWCNTs showed much lower sheet resistances than those of the TA-SWCNTs prior to the acid treatment.

  • PDF

Threshold Voltage Variation of ZnS:Mn/ZnS:Tb Thin- film Electroluminescent(TFEL) Devices (ZnS:Mn/ZnS:Tb 박막 전계발광소자의 문턱전압 변화)

  • 이순석;윤선진;임성규
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.21-27
    • /
    • 1998
  • Electrical and optical characteristics of ZnS:Mn/ZnS:Tb multilayer TFEL devices were investigated for multi-color electroluminescent display applications. Emission spectra of M $n^{2+}$ and T $b^{3+}$ ions were observed from ZnS:Mn/ZnS:Tb multi-layer TFEL devices, and were very broad from 540 nm to 640 nm. Saturation luminance measured at 155 V was 1025 Cd/$m^2$. C-V, $Q_{t}$ - $V_{p}$ curves showed that the phosphor capacitance ( $C_{p}$ ) and the insulator capacitance ( $C_{i}$ ) were 13.5nF/$\textrm{cm}^2$ and 60 nF/$\textrm{cm}^2$, respectively. Threshold voltage( $V_{thl}$) was shown to decrease from 126 V to 93 V due to the increase of the applied voltage from 155 V to 185 V, which was attributed to the increase of the polarization charge. The equation for the calculation of the threshold voltage as a function of the applied voltage was proposed for the first time. The calculated threshold voltage agreed well with the data obtained from the measurement.t.t.t.

  • PDF

A study on Etch Characteristics of {Y-2}{O_3}$ Thin Films in Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 {Y-2}{O_3}$ 박막의 식각 특성 연구)

  • Kim, Yeong-Chan;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.611-615
    • /
    • 2001
  • Y$_2$O$_3$ thin films have been proposed as a buffering insulator of metal/ferroelectric/insulator/semiconductor field effect transistor(MFISFET)-type ferroelectric random access memory (FRAM). In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma(ICP). The etch rates of $Y_2$O$_3$ and YMnO$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were 302$\AA$/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 respectively. Optical emission spectroscopy(OES) was used to understand the effects of gas combination on the etch rate of $Y_2$O$_3$ thin film. The surface reaction of the etched $Y_2$O$_3$ thin films was investigated by x-ray photoelectron spectroscopy (XPS). XPS analysis confirmed that there was chemical reaction between Y and Cl. This result was confirmed by secondary ion mass spectroscopy(SIMS) analysis.

  • PDF

Electrically Controllable Asymmetric Split-Loop Terahertz Resonator with Outer Square Loop (전기적 제어 가능한 외곽 사각 고리 추가형 테라헤르츠 비대칭 분리고리공진기)

  • Park, Dae-Jun;Ryu, Han-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • This paper proposes an asymmetric split-loop resonator with an outer square loop (ASLR-OSL), which can actively control terahertz wave transmission properties while maintaining a high-Q-factor of the asymmetric split-loop resonator (ASLR). An added outer square loop is designed to play the roles of both a metamaterial and a micro-heater, which can control the temperature through a directly applied bias voltage. A vanadium dioxide ($VO_2$) thin film, which exhibits an insulator-metal phase transition with temperature change, is used to control the transmission properties. The proposed ASLR-OSL shows transmission properties similar to those of the ASLR, and they can be successfully controlled by directly applying bias voltage to the outer square loop. Based on these results, an electrically controllable terahertz high-Q metamaterial could be achieved simply by adding a square loop to the outside of a well-known high-Q metamaterial.

Effect of Thermal Annealing for MgGa2Se4 Single Crystal Thin Film Grown by Hot Wall Epitaxy (뜨거운 곁쌓기 법에 의해 성장된 MgGa2Se4 단결정 박막의 열처리 효과)

  • Bang, Jinju;Kim, Hyejeong;Park, Hwangseuk;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ compounded polycrystal powder was deposited on thoroughly etched semi-insulated GaAs(100) substrate by the hot wall epitaxy (HWE) method system. The source and substrate temperatures of optimized growth conditions, were $610^{\circ}C$ and $400^{\circ}C$, respectively.The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34\;eV-(8.81{\times}10^{-4}\;eV/K)T^2/(T+251\;K)$. After the as-grown $MgGa_2Se_4$ single crystal thin films was annealed in Mg-, Se-, and Ga-atmospheres, the origin of point defects of $MgGa_2Se_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Mg}$, $V_{Se}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Se-atmosphere converted $MgGa_2Se_4$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $MgGa_2Se_4$/GaAs did not form the native defects because Ga in $MgGa_2Se_4$ single crystal thin films existed in the form of stable bonds.

Study on crystallization of $PbTiO_3$ thin films by the Sol-Gel method (Sol-Gel법을 이용한 $PbTiO_3$ 박막의 결정화에 관한 연구)

  • Kyu Seog Hwang;Byung Wan Yoo;Byung Hoon Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.199-209
    • /
    • 1994
  • $PbTiO_3$ thin films were prepared on soda-lime-silica slide glasses, Si-wafer and sapphire substrate by the dip-coating of precursor solution. As starting materials, titanium tetra iso-propoxide and lead acetate trihydrate were used. Then acetylacetone was added to prepare stable sol. The effect of the parameters such as viscosity and composition of sol were investigated. The optical transmittance at visible range, refractive index, IR spectra were measured in varying compositions, thickness and heat treatment temperature. The crystallization of $PbTiO_3$ films were measured by using XRD and SEM. Diffusion of compositions from slide glass to thin film were investigated by using EDX, too. These sols not precipitated for 20 days. Transmittance of $PbTiO_3$ films at visible range were decreased with the increase of thickness and heat treatment temperatures, and were exhibited flat spectra. Pyrochlore type appeared in the films on slide glass and perovskite type appeared in the films on Si-wafer or sapphire at $600^{\circ}C$. Perovskite crystals transformed to $PbTi_3O_7$ phase at $800^{\circ}C$.

  • PDF