• 제목/요약/키워드: Optical fiber measurement

검색결과 466건 처리시간 0.03초

Measurement Method and System of Optical Fiber-Based Beam Width Using a Reflective Grating Panel

  • Lee, Yeon-Gwan;Jang, Byeong-Wook;Kim, Yoon-Young;Kim, Jin-Hyuk;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.175-178
    • /
    • 2011
  • An optical fiber-based beam width measurement technique is presented. The proposed system can be applied to the optical fiber industry in applications such as lensed fiber, optical fiber based laser beam source, and fiber optic sensor. The measurement system is composed of optical fiber, which is used as a transceiver, and a single grating panel which consists of a multi-reflection area with an even non-reflection area. The grating panel is used to vary the reflected light. When the widths of the reflection area and non-reflection area are larger than the optical beam width, the reflected light is varied at the interface between the reflection area and the non-reflection area by the movement of the grating panel. Experiments were conducted in order to verify the feasibility of the proposed technique. Multi-mode fiber combined with a collimator was selected as an emitter and a receiver, and the beam width measurement system was contrived. Subsequently, the proposed method and the system were verified by comparing the experimental results with the results of the conventional charge-coupled device technique.

Wavelength Swept 모드 록킹된 광섬유 레이저를 이용한 광주파수 영역에서 반사계 (Optical frequency domain reflectometry based on Wavelength swept mode locked fiber laser)

  • 오명숙;박희수;김병윤
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.204-205
    • /
    • 2003
  • We demonstrate a novel OFDR system with compactness and short measurement time based on the use of a wavelength-swept mode-locked fiber laser. The optical source uses an intra-cavity tunable Fabry-Perot filter as a tuning element. The fiber laser sweeps 20 nm in less than 10 ms. Spatial resolution of 100 fm and total measurement range of several centimeters are demonstrate

  • PDF

광섬유의 잔류응력 측정 방법 (Measurement method for profiling residual stress of an optical fiber)

  • 박용우;백문철;진애경;백운출;김덕영
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.219-223
    • /
    • 2003
  • 광섬유의 잔류응력(residual stress)을 측정하기 위해 위상보정 편광기(polariscope)를 새롭게 구성하고, 간섭이나 회절에 대한 영향을 최소화시키면서 빠르고 정확하게 측정하는 방법을 제시하였다. 이 방법을 이용하여 일반 광섬유의 잔류 응력 분포를 측정할 수 있었다. 또한 광섬유의 잔류응력이 모재의 잔류응력분포와 달리 인출 시 발생하는 광섬유 내 온도의 냉각곡선에 밀접한 관계를 갖고 있음을 알 수 있었다.

광섬유 센서를 이용한 섬유-금속 적층판의 손상 감지 (Damage Detection of Fiber-Metal Laminates Using Optical Fiber Sensors)

  • 양유창;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.161-164
    • /
    • 2002
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. EFPI was less sensible to the damage signals compared with the optical fiber vibration sensor. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Optical-fiber Electronic Speckle Pattern Interferometry for Quantitative Measurement of Defects on Aluminum Liners in Composite Pressure Vessels

  • Kim, Seong Jong;Kang, Young June;Choi, Nak-Jung
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.50-56
    • /
    • 2013
  • Optical-fiber electronic speckle pattern interferometry (ESPI) is a non-contact, non-destructive examination technique with the advantages of rapid measurement, high accuracy, and full-field measurement. The optical-fiber ESPI system used in this study was compact and portable with the advantages of easy set-up and signal acquisition. By suitably configuring the optical-fiber ESPI system, producing an image signal in a charge-coupled device camera, and periodically modulating beam phases, we obtained phase information from the speckle pattern using a four-step phase shifting algorithm. Moreover, we compared the actual defect size with that of interference fringes which appeared on a screen after calculating the pixel value according to the distance between the object and the CCD camera. Conventional methods of measuring defects are time-consuming and resource-intensive because the estimated values are relative. However, our simple method could quantitatively estimate the defect length by carrying out numerical analysis for obtaining values on the X-axis in a line profile. The results showed reliable values for average error rates and a decrease in the error rate with increasing defect length or pressure.

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.

가간섭성 광섬유 센서에 대한 주파수 천이도의 영향 (Effect of spectral drift to coherent optical fiber sensor)

  • 최규남
    • 한국전자통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.277-282
    • /
    • 2016
  • 페브리-페로 공진루프에서 광궤환이 가간섭성 광섬유 레이저의 주파수 천이도에 미치는 영향을 연구하였다. Er+3가 도핑 된 광궤환 방식 광섬유 레이저는 두 개의 광섬유브래그격자로 이루어진 페브리-페로 공진기에서 단방향 광궤환이 이루어지도록 구성하였다. 광궤환은 그렇지 않은 경우와 비교하여 광섬유레이저의 선폭 감소에 효과적인 것으로 나타났다. 위의 구성을 사용한 세 가지 광섬유 레이저는 모두 자기헤테로다인 선폭 측정 장치의 해상도 한계인 3kHz 이내로 나타났다. 마크-젠더 주파수 천이도 측정 장치의 한쪽 선로에 200m 길이의 광지연 선로를 두고 측정한 결과는 광궤환 방식 광섬유 레이저의 주파수 천이도가 광궤환이 없는 광섬유 레이저 보다 우수한 300kHz/sec으로 나타났다.

광섬유 표면의 기계적 손상에 대한 잔류응력 분포의 변화 (Gradient of the Residual Stress distribution in the Mechanical Defect on the Optical Fiber Surface)

  • 신인희;김덕영
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2005년도 하계학술발표회
    • /
    • pp.206-207
    • /
    • 2005
  • The gradient of the residual stress distribution in the mechanical defect on the optical fiber surface was investigated. This gradient of the residual stress distribution appeared in both of the core and the clad of the mechanical defect region on the optical fiber. The residual stress measurement was suggested as a investigation method of the mechanical defect on the optical fiber.

  • PDF

광섬유 센서에 의한 말뚝 하중전이 측정 (Measurement of Pile Load Transfer using Optical Fiber Sensors)

  • 오정호;이원제;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF