• Title/Summary/Keyword: Optical feature

Search Result 405, Processing Time 0.035 seconds

Terrain Aided Inertial Navigation for Precise Planetary Landing (정밀 행성 착륙을 위한 지형 보조 관성 항법 연구)

  • Jeong, Bo-Young;Choi, Yoon-Hyuk;Jo, Su-Jang;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.673-683
    • /
    • 2010
  • This study investigates Terrain Aided Inertial Navigation(TAIN) which consists of Inertial Navigation System (INS) with the optical sensor for precise planetary landing. Image processing is conducted to extract the feature points between measured terrain data and on-board implemented terrain information. The navigation algorithm with Iterated Extended Kalman Filter(IEKF) can compensate for the navigation error, and provide precise navigation information compared to single INS. Simulation results are used to demonstrate the feasibility of integration to accomplish precise planetary landing. The proposed navigation approach can be implemented to the whole system coupled with guidance and control laws.

Spatial-temporal texture features for 3D human activity recognition using laser-based RGB-D videos

  • Ming, Yue;Wang, Guangchao;Hong, Xiaopeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1595-1613
    • /
    • 2017
  • The IR camera and laser-based IR projector provide an effective solution for real-time collection of moving targets in RGB-D videos. Different from the traditional RGB videos, the captured depth videos are not affected by the illumination variation. In this paper, we propose a novel feature extraction framework to describe human activities based on the above optical video capturing method, namely spatial-temporal texture features for 3D human activity recognition. Spatial-temporal texture feature with depth information is insensitive to illumination and occlusions, and efficient for fine-motion description. The framework of our proposed algorithm begins with video acquisition based on laser projection, video preprocessing with visual background extraction and obtains spatial-temporal key images. Then, the texture features encoded from key images are used to generate discriminative features for human activity information. The experimental results based on the different databases and practical scenarios demonstrate the effectiveness of our proposed algorithm for the large-scale data sets.

Serially multiplexed FBG accelerometer for structural health monitoring of bridges

  • Talebinejad, I.;Fischer, C.;Ansari, F.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.345-355
    • /
    • 2009
  • This article describes the development of a fiber optic accelerometer based on Fiber Bragg Gratings (FBG). The accelerometer utilizes the stiffness of the optical fiber and a lumped mass in the design. Acceleration is measured by the FBG in response to the vibration of the fiber optic mass system. The wavelength shift of FBG is proportional to the change in acceleration, and the gauge factor pertains to the shift in wavelength as a function of acceleration. Low frequency version of the accelerometer was developed for applications in monitoring bridges. The accelerometer was first evaluated in laboratory settings and then employed in a demonstration project for condition assessment of a bridge. Laboratory experiments involved evaluation of the sensitivity and resolution of measurements under a series of low frequency low amplitude conditions. The main feature of this accelerometer is single channel multiplexing capability rendering the system highly practical for application in condition assessment of bridges. This feature of the accelerometer was evaluated by using the system during ambient vibration tests of a bridge. The Frequency Domain Decomposition method was employed to identify the mode shapes and natural frequencies of the bridge. Results were compared with the data acquired from the conventional accelerometers.

"Bluening" in Spitzer/IRAC Bands by Interstellar Extinction

  • Sim, Chae Kyung;Kim, Sungsoo S.;Lee, Jeong-Eun;Kim, Sang Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2013
  • We analyze the behaviors of reddening vectors in the Spitzer/IRAC photometric system for young stellar objects (YSOs) of different evolutionary stages, masses, and inclinations using the model spectral energy distributions (SED) by Robitaille et al. As reported in visible and near-infrared photometric systems, the magnitudes and colors of YSOs show strong SED dependence and non-linearity. In the [8.0] band where the 9.7 ${\mu}m$ interstellar silicate feature plays a significant role in extinction, the effective wavelength shifts "bluewards", not "redwards" as in most, if not all, optical and infrared bands including the other three IRAC bands, as the extinction in Ks increases up to ~2 mag, and then asymptotically reaches a constant value as the extinction further increases. This "bluening" is seen when the YSO is in later evolutionary stage and/or has a stellar mass of ~2 $M_{\odot}$ or greater. In many cases, the reddening vectors in the IRAC color-color diagrams are prominently curved, and in some extreme cases, the colors involving the [8.0] band becomes bluer in the beginning and then becomes redder later as the amount of extinction increases. We also present our "suggested" extinction laws employing the combination of a broken-power law and the 9.7 ${\mu}m$ silicate feature, which well reproduce the extinction behaviors observed in the IRAC bands.

  • PDF

Optical Design and Construction of Narrow Band Eliminating Spatial Filter for On-line Defect Detection (온라인 결함계측용 협대역 제거형 공간필터의 최적설계 및 제작)

  • 전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.59-67
    • /
    • 1998
  • A quick and automatic detection with no harm to the goods is very important task for improving quality control, process control and labour reduction. In real fields of industry, defect detection is mostly accomplished by skillful workers. A narrow band eliminating spatial filter having characteristics of removing the specified spatial frequency is developed by the author, and it is proved that the filter has an excellent ability for on-line and real time detection of surface defect. By the way,. this spatial filter shows a ripple phenominum in filtering characteristics. So, it is necessary to remove the ripple component for the improvement of filter gain, moreover efficiency of defect detection. The spatial filtering method has a remarkable feature which means that it is able to set up weighting function for its own sake, and which can to obtain the best signal relating to the purpose of the measurement. Hence, having an eye on such feature, theoretical analysis is carried out at first for optimal design of narrow band eliminating spatial filter, and secondly, on the basis of above results spatial filter is manufactured, and finally advanced effectiveness of spatial filter is evaluated experimentally.

  • PDF

The Optical and IR Properties of Peculiar early-type galaxies from Stripe82 and WISE Data

  • Hong, Jueun;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Galaxy merging plays a important role to the formation and evolution of galaxy. Early-type galaxies are believed to be formed by galaxy merging. We combined 3 color images in g,r,i band using Stripe82 image of which the surface brightness is 2 mag deeper than that of SDSS image. We classified early-type galaxies which have the merging features, the evidence of galaxy mergers through careful visual inspection. We investigated the IR properties of early-type galaxies with the merging feature using WISE data. We analyzed the star formation according to the type of galaxy. Early-type galaxies with the merging feature show the higher star formation than non-merging galaxies, but the difference is not significant. This results implies that quite a few early-type galaxies might be formed by dry merger, not wet merger. Meanwhile, the most of ULIRGs show tidal tail, on the other hand, early-type galaxies show tidal tail including shell structure. It suggests that ULIRGs have more gas and it might be in early stage of galaxy merging, early-type galaxies might be in the late stage of galaxy merging.

  • PDF

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

HMM-based Intent Recognition System using 3D Image Reconstruction Data (3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템)

  • Ko, Kwang-Enu;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • The mirror neuron system in the cerebrum, which are handled by visual information-based imitative learning. When we observe the observer's range of mirror neuron system, we can assume intention of performance through progress of neural activation as specific range, in include of partially hidden range. It is goal of our paper that imitative learning is applied to 3D vision-based intelligent system. We have experiment as stereo camera-based restoration about acquired 3D image our previous research Using Optical flow, unscented Kalman filter. At this point, 3D input image is sequential continuous image as including of partially hidden range. We used Hidden Markov Model to perform the intention recognition about performance as result of restoration-based hidden range. The dynamic inference function about sequential input data have compatible properties such as hand gesture recognition include of hidden range. In this paper, for proposed intention recognition, we already had a simulation about object outline and feature extraction in the previous research, we generated temporal continuous feature vector about feature extraction and when we apply to Hidden Markov Model, make a result of simulation about hand gesture classification according to intention pattern. We got the result of hand gesture classification as value of posterior probability, and proved the accuracy outstandingness through the result.

Aerial Scene Labeling Based on Convolutional Neural Networks (Convolutional Neural Networks기반 항공영상 영역분할 및 분류)

  • Na, Jong-Pil;Hwang, Seung-Jun;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.484-491
    • /
    • 2015
  • Aerial scene is greatly increased by the introduction and supply of the image due to the growth of digital optical imaging technology and development of the UAV. It has been used as the extraction of ground properties, classification, change detection, image fusion and mapping based on the aerial image. In particular, in the image analysis and utilization of deep learning algorithm it has shown a new paradigm to overcome the limitation of the field of pattern recognition. This paper presents the possibility to apply a more wide range and various fields through the segmentation and classification of aerial scene based on the Deep learning(ConvNet). We build 4-classes image database consists of Road, Building, Yard, Forest total 3000. Each of the classes has a certain pattern, the results with feature vector map come out differently. Our system consists of feature extraction, classification and training. Feature extraction is built up of two layers based on ConvNet. And then, it is classified by using the Multilayer perceptron and Logistic regression, the algorithm as a classification process.