Haiqiang Qian;Leihong Zhang;Dawei Zhang;Kaimin Wang
Current Optics and Photonics
/
제8권3호
/
pp.215-224
/
2024
In medium- and long-range optical imaging systems, atmospheric turbulence causes blurring and distortion of images, resulting in loss of image information. An image-restoration method based on an adaptive feature-fusion multi-input-multi-output (MIMO) dense U-shaped network (Unet) is proposed, to restore a single image degraded by atmospheric turbulence. The network's model is based on the MIMO-Unet framework and incorporates patch-embedding shallow-convolution modules. These modules help in extracting shallow features of images and facilitate the processing of the multi-input dense encoding modules that follow. The combination of these modules improves the model's ability to analyze and extract features effectively. An asymmetric feature-fusion module is utilized to combine encoded features at varying scales, facilitating the feature reconstruction of the subsequent multi-output decoding modules for restoration of turbulence-degraded images. Based on experimental results, the adaptive feature-fusion MIMO dense U-shaped network outperforms traditional restoration methods, CMFNet network models, and standard MIMO-Unet network models, in terms of image-quality restoration. It effectively minimizes geometric deformation and blurring of images.
얼굴영상에서 나타나는 정서특징을 분석하기 위하여 본 논문에서는 Active Shape Model (ASM)과 Lucas-Kanade (LK) optical flow 기법을 기반으로 하는 특징검출 및 분석방법을 제안한다. Facial Action Coding System에 근거하여 묘사된 정서적 특징을 고려하여, 특징이 분포하는 영역에 위치한 다수의 landmark로 shape 모델을 구성하고 모델에서 각 Landmark를 중심으로 하는 움직임 벡터 윈도우 내부의 픽셀에 대한 LK 기법을 통해 optical flow 벡터를 추출한다. 추출된 움직임 벡터의 방향성 조합에 근거하여 얼굴정서특징을 shape 모델로 표현할 수 있으며, 베이지안 분류기라는 확률 기반 추론기법을 기반으로 정서적 상태에 대한 추정할 수 있다. 또한, 정서특징분석과정의 연산 효율성과 정확성 향상을 도모하기 위하여 common spatial pattern (CSP) 분석기법을 적용하여 정서상태 별로 상관성이 높은 특징만으로 구성된 최적정서특징을 추출한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권9호
/
pp.2424-2441
/
2012
In this paper, we propose a fake iris detection method that combines the optical and textural features of the human eye. To extract the optical features, we used dual Purkinje images that were generated on the anterior cornea and the posterior lens surfaces based on an analytic model of the human eye's optical structure. To extract the textural features, we measured the amount of change in a given iris pattern (based on wavelet decomposition) with regard to the direction of illumination. This method performs the following two procedures over previous researches. First, in order to obtain the optical and textural features simultaneously, we used five illuminators. Second, in order to improve fake iris detection performance, we used a SVM (Support Vector Machine) to combine the optical and textural features. Through combining the features, problems of single feature based previous works could be solved. Experimental results showed that the EER (Equal Error Rate) was 0.133%.
거리 변환(Distance Transform)을 수행할 수 있는 셀룰라 비선형 네트워크 구조와 특징 점들의 제적 상에서 거리 변환을 이용한 optical flow 검출 방법을 제안하였다. 움직이는 물체의 추적이나 카메라의 움직임 파악 같은 응용 분야에서는 수가 적더라도 정확하고 확실한 optical flow가 더 중요하다. 본 연구는 특징점들의 이동 궤적 상에서 거리 변환 기법을 이용하여 거리 변환 필드(Distance Transform Field)를 생성시키고 거리 변환 필드상에서 궤적의 움직인 거리 값과 방향을 추출함으로써 optical flow를 구하는 방법이다. 이 방법은 영상 정보를 거리 정보로 변환하여 사용하게 되므로 잡음의 영향을 적게 받으며 필요한 연산들이 아날로그 회로에 의해 처리되므로 처리 속도가 빠르고, 지역적 처리 특성을 갖기 때문에 하드웨어 구현이 용이하다는 특징이 있다. 또한, 본 연구에서는 제안한 알고리즘의 핵심부분을 하드웨어로 구현하기 위해 셀룰라 비선형 네트워크(Celluar Nonlinear Neural Network)구조를 제안하였다. 제안한 구조와 알고리즘을 검증하기 위해 다양한 영상과 환경에 대한 시뮬레이션을 수행하여 결과를 제시하였다.
본 논문에서는 사전학습이 필요 없는 능동 특징점 모델(non-prior training active feature model; NPT AFM) 기반에서 광류(optical flow)를 이용한 객체추적 기술을 제안한다. 제안한 알고리듬은 비정형 객체에 대한 분석[1]에 초점을 두고 있으며, 실시간에서 NPT-AFM을 사용한 강건한 추적을 가능하게 한다. NPT-AFM 알고리듬은 관심 객체의 위치를 파악하는 과정 (localization)과 이전 프레임 정보와 현재 프레임 정보를 이용하여, 객체의 위치를 예측(prediction), 보정(correction)하는 과정으로 나눌 수 있다 위치 파악 과정에서는 움직임 분할(motion segmentation)을 수행한 후 개선된 Shi-Tomasi의 특징점 추적 알고리듬[2]을 사용 하였다. 예측 및 보정 과정에서는 광류 정보를 사용하여 특징점을 추적하고[3] 만약, 특징점이 적절히 추적 되지 않거나 추적에 실패하면 특징점들의 시간(temporal), 공간(spatial)적 정보를 이용하여 예측, 보정하게 된다. 객체의 형태 (shape)대신 특징점을 사용하였으며, 객체를 추적하는 과정에서 특징점들은 능동 특징점 모델(active feature model; AFM)을 위한 학습 집합(training sets)의 요소로 갱신된다. 실험결과, 제안한 NPT-AF% 기반 추적 알고리듬은 실시간에서 비정형 객체를 추적하는데 강건함을 보석준다.
In this paper, feature vectors composed of 6 features of Fourier spectrum of 2-D image at each projection angle and 7 features of invariant moments are defined. The feature are extracted by optical Fourier transformer and Radon transformer. After extracting the feature, the input pattern is recognized using the squared Mahalanobis distance.
This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.
The Cellular Nonlinear Networks structure for Distance Transform (DT) and the robust optical flow detection algorithm based on the DT are proposed. The proposed algorithm is for detecting the optical flows on the trajectories only of the feature points. The translation lengths and the directions of feature movements are detected on the trajectories of feature points on which Distance Transform Field is developed. The robustness caused from the use of the Distance Transform and the easiness of hardware implementation with local analog circuits are the properties of the proposed structure, To verify the performance of the proposed structure and the algorithm, simulation has been done about zooming image.
한국광학회 1990년도 제5회 파동 및 레이저 학술발표회 5th Conference on Waves and lasers 논문집 - 한국광학회
/
pp.121-125
/
1990
Optical Hough transform technique is introduced to obtain the straight line features in parallel from the input scene images. Experimental results are also provided to demonstrate the advantage of such optical parallel processor over the digital one. Peaks in optical Hough space are free from quantization noise and thus easy to detect.
In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.