• Title/Summary/Keyword: Optical damage

Search Result 366, Processing Time 0.03 seconds

Damage Characteristics of Metal Specimens by Formaldehyde (포름알데히드에 의한 금속시편의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.287-298
    • /
    • 2015
  • The formaldehyde is damage to the metal are known universally. However, the quantification of the damage level and degree of damage is not clear. This study was conducted to test the following steps using a gas corrosion tester, and then evaluated by the optical, chemical and physical measurement. First, it was confirmed the damage level of the metal specimen(silver, copper, iron, lead, brass) by the formaldehyde(0.5, 1, 10, 100, 500ppm). Second, weighted damage to the metal specimens were tested according to the temperature and humidity conditions under damage levels. Third, the damage of accelerated degradation metal specimens were examined under damage levles. As a result, at 500ppm / day, the optical, chemical and physical damage of lead have been identified, the optical damage of all metals are was observed. The optical damage of some specimens were weighted in $25^{\circ}C-50%$, $30^{\circ}C-50%$. Chemical damage to the lead specimen is 2.8 times, 1.3 times were weighted in $30^{\circ}C-80%$, $25^{\circ}C-80%$. Referring to formate ion concentration of the accelerated degradation metal, corrosion products of iron and brass were actived the reaction of the formaldehyde gas, oxide film of lead was blocked the reaction of formaldehyde gas.

Study of Damage in Germanium Optical Window Irradiated by a Near-infrared Continuous Wave Laser (근적외선 연속발진 레이저 조사에 의한 게르마늄 광학창 손상 연구)

  • Lee, Kwang Hyun;Shin, Wan-Soon;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • The damage in germanium (Ge) optical window irradiated by a near-infrared continuous wave (CW) laser was studied. Laser-induced heating and melting process were surveyed, and the specific laser power and the irradiance time to melt were estimated by numerical simulation. The experiments were also carried out to investigate the macro and micro structure change on Ge window. Results showed that the surface deformation was formed by melting and resolidification process, the damaged surface had a polycrystalline phase, and the transmittance as an optical performance factor in mid-infrared region was decreased. We confirmed that an abnormal polycrystalline phase and surface deformation effect such as hillock formation and roughness increase reduced the transmittance of Ge window and were the damage mechanism of CW laser induced damage on Ge window.

Damage Assessment Technique for Bridge Structures By Moving Load Tests and Optical Displacement Measurements (광변위 계측과 주행하중시험기법에 의한 교량구조의 손상도 추정기법)

  • Lee, Hyeong-Jin;Kim, Jong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.769-777
    • /
    • 2015
  • In this paper, a damage assessment technique using a moving load test and optical sensors was studied to overcome the deficiency of measurement information in bridge maintenance. Continuous displacements by applying the reciprocal theorem to the test can make the assessment simpler and more practical. Numerical and experimental studies were performed to show the efficiency and accuracy of the proposed technique as well as the possibility of a more realistic assessment for large infrastructure. The results showed that the assessed damage levels are quite accurate, and similar to the exact values in actual damage locations, even in the experiments. The proposed technique is useful and practical for both detecting damage locations and damage quantities.

Real-time Failure Detection of Composite Structures Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재 구조물의 실시간 파손감지)

  • 방형준;강현규;류치영;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.128-133
    • /
    • 2000
  • The objective of this research is to develop real-time failure detection techniques for damage assessment of composite materials using optical fiber sensors. Signals from matrix cracking or fiber fracture in composite laminates are treated by signal processing unit in real-time. This paper describes the implementation of time-frequency analysis such as the Short Time Fourier Transform(STFT) to determine the time of occurrence of failure. In order to verify the performance of the optical fiber sensor for stress wave detection, we performed pencil break test with EFPI sensor and compared it with that of PZT. The EFPI sensor was embedded in composite beam to sense the failure signals and a tensile test was performed. The signals of the fiber optic sensor when damage occurred were characterized using STFT and wavelet transform. Failure detection system detected the moment of failure accurately and showed good sensitivity with the infinitesimal failure signal.

  • PDF

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

Surface Damage Mechanism of Hard Disk (하드디스크의 표면 파손 기구에 관한 고찰)

  • 정구현;김대은;김상국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.716-720
    • /
    • 1996
  • In this work the surface damage mechanism of hard disk was investigated. Experiments were peformed to simulate the contact during start and stop. Evidence of significant surface damage appeared after 20,000 cycles. It was found that despite higher hardness, the slider showed more signs of damage than the disk. Optical microscopy showed that the surface was damaged by abrasive action as well as adhesion of wear debris.

  • PDF

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors (삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시)

  • Lee, Dong-Chun;Lee, Jung-Ju;Seo, Dae-Cheol;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2001
  • In this study, the effects of embedded optical fibers on the static properties under tensile load and dynamic properties under fatigue load of composite laminates were investigated by experimental tests and finite element analysis. Based on the results, it can be concluded that the embedded optical fiber sensors do not have significant effects on the structural integrity of the smart composite structures except when the sensors are embedded perpendicular to the adjacent reinforcing fibers under fatigue loading. An intensity-based optical fiber sensor was embedded in the crossply composite laminates to monitor the fatigue damage by detecting the stiffness changes of the laminates. The result of this experiment has shown that the intensity-based optical fiber sensor has large potential to monitor the fatigue damage of composite structures by detecting the stiffness changes of the structures with simple and inexpensive instruments and without complex post-processing of measured signals. In addition, the optical fiber sensor showed good resistance to fatigue loading and wide sensing ranges of stiffness.

  • PDF

Damage Characteristics of Metal Materials According to the SO2 Concentration (이산화황 농도에 따른 금속시편의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Shin, Eun Jeong;Lee, Sun Myung
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.176-187
    • /
    • 2013
  • A study has been carried out on metal materials in order to identify the quantitative relation between the concentration and damage characteristics after evaluation of the damage characteristics according to the $SO_2$ concentration. The prepared metal samples, which were categorized according to the material (silver, copper, iron, lead, brass) were exposed to 0.01, 0.12, 1, 10, 100, 1,000, and 5,000ppm of $SO_2$ for 24 hours and the optical, physical, chemical deterioration rates both before and after testing were evaluated. The results showed optical deterioration, a loss of gloss on silver specimen with $SO_2$ 100ppm, an increase of color difference on brass, iron, copper and lead specimens with $SO_2$ 5,000ppm, as well as physical changes such as an increase of thickness and corrosion rate on iron sample with $SO_2$ 5,000ppm. In the case of chemical changes such as an increase sulfate ion ($SO{_4}^{2-}$) concentration and decrease of pH on iron and brass specimens were identified. These results suggest that $SO_2$ 100ppm caused clear optical deterioration on some metals such as silver and physicochemical and optical deterioration were identified at $SO_2$ 5,000ppm regardless of metal type. Also, It was concluded that iron and brass are the most susceptible of the metal specimens to $SO_2$.

Detection of Damage of Rd6G Film Using Surface Second-Harmonic Generation (표면 제2고조파 발생을 이용한 색소 Rd6G박막층의 손상 분석)

  • 유대혁;고춘수;임용식;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.272-277
    • /
    • 1994
  • The damage of a thin film of Rd6G dye was probed by Surface Second-Harmonic Generation(SSHG) method. A portion of the Rd6G thin film on glass substrate was damaged by 532 nm laser beam, and the damage was probed by detecting intensity variation of SSHG. The result was confirmed through direct observation with optical microscope.oscope.

  • PDF