• Title/Summary/Keyword: Optical conductivity

Search Result 380, Processing Time 0.029 seconds

Effect of KCN Treatment on Cu-Se Secondary Phase of One-step Sputter-deposited CIGS Thin Films Using Quaternary Target

  • Jung, Sung Hee;Choi, Ji Hyun;Chung, Chee Won
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.88-94
    • /
    • 2014
  • The structural, optical and electrical properties of sputter-deposited CIGS films were directly influenced by the sputtering process parameters such as substrate temperature, working pressure, RF power and distance between target and substrate. CIGS thin films deposited by using a quaternary target revealed to be Se deficient due to Se low vapor pressure. This Se deficiency affected the overall stoichiometry of the films, causing the films to be Cu-rich. Current tends to pass through the Cu-Se channels which act as the shunting path increasing the film conductivity. The crystal structure of CIGS thin films depends on the substrate orientation due to the influence of surface morphology, grain size and stress of Mo substrate. The excess of Cu was removed from the CIGS films by KCN treatment, achieving a suitable Cu concentration (referred as Cu-poor) for the fabrication of solar cell. Due to high Cu concentrations on the CIGS film surface induced by Cu-Se phases after CIGS film deposition, KCN treatment proved to be necessary for the fabrication of high efficiency solar cells. Also during KCN treatment, dislocation density and lattice parameter decreased as excess Cu was removed, resulting in increase of bandgap and the decrease of conductivity of CIGS films. It was revealed that Cu-Se secondary phase could be removed by KCN wet etching of CIGS films, allowing the fabrication of high efficiency absorber layer.

Preparation and Characterization of Elastomeric Solid Electrolyte Based on $PEO-EDA-LiClO_4$ Blends ($PEO-EDA-LiClO_4$ 블렌드계 탄성체 전해질의 제조와 특성)

  • Chang, Young-Wook;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • Solid polymer electrolytes were prepared by UV irradiation of the blends consisting of poly(ethylene oxide)(PEO), epoxy diacrylate(EDA) and LiClO_4$. Conductivities of the electrolyte films were measured as a function or blend composition, salt concentration and temperature. The electrolyte having the composition of poly(ethylene oxide) (70% by weight)/epoxy diacrylate (30% by weight) with mole ratio of 10 of ethylene $oxide/Li^+$ exhibited a high ionic conductivity of $1.2{\times}10^{-5} S/cm$ at $25^{\circ}C$. This blend is transparent and shows elastomeric properties. Morphological studies by means of differential scanning calorimetry, X-ray diffraction and polarized optical microscopy indicated that the cured epoxy chains in the blends inhibit the crystallization of poly (ethylene oxide) and thereby induce the blend systems to be completely amorphous in certain compositions.

Analysis of the Effect of the Substrate Removal and Chip-Mount Type on Light Output Characteristics in InGaN/Sapphire LEDs (InGaN/Sapphire LED에서 기판 제거 유무와 칩 마운트 타입이 광출력 특성에 미치는 영향)

  • Hong, Dae-Woon;Yoo, Jae-Keun;Kim, Jong-Man;Yoon, Myeong-Jung;Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.381-385
    • /
    • 2008
  • We have analyzed the effect of the substrate removal and packaging schemes on light output characteristics in InGaN/Sapphire LEDs. The removal of the sapphire substrate helps to dissipate the heat generated in the junction, but the advantage comes only with the detrimental effect of degrading the photon extraction efficiency. If the substrate-removed chip is attached to a metallic mount with good thermal conductivity, the maximum driving current is increased drastically, producing significantly increased light output and therefore compensating the photon extraction efficiency degradation. On a dielectric mount with a relatively poor thermal conductivity, however, it produces smaller light output, over most input current range, than the regular type of chips with the sapphire substrate remaining. Thus, for low power applications, the regular chips may be preferred over the substrate-removed chips, regardless of the chip mounts employed.

Thermal Analysis of Satellite Panel Using Carbon Composites (탄소복합재를 이용한 위성 패널의 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Park, Jong-Seok;Park, Kun-Joo
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • Thermal control of satellite is mainly based on passive ways, such as the radiator made of aluminum honeycomb core with aluminum skins and OSR (Optical Solar Reflector). Additionally, for the thermal control of high dissipation unit, the aluminum doubler and heat pipe are utilized. Recently, efforts to find advanced thermal materials have been carried out to enhance heat rejection capability without increasing satellite size, weight and cost. This paper handles the carbon composites have high thermal conductivity with light weigh and have been considered as future thermal control materials to replace aluminum based radiator and doubler. Thermal analysis of satellite panel using APG(Annealed Pyrolytic Graphite) and carbon-carbon composites were performed and temperature contours were compared with the conventional thermal control methods.

Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process (세라믹 방열 복합체의 열전도도 분석 및 Wetting Process를 이용한 SiC/에폭시 복합체)

  • Hwang, Yongseon;Kim, Jooheon;Cho, WonChul
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.782-786
    • /
    • 2014
  • Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FE-SEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.

Effect of the Deposition Temperature on the Transmittance & Electrical Conductivity of In1.6Zn0.2Sn0.2O3-δ Thin Films Prepared by RF-magnetron Sputtering (RF-마그네트론 스퍼터링에 의해 제조된 In1.6Zn0.2Sn0.2O3-δ 박막의 투과율 및 전기 전도성에 미치는 증착 온도의 영향)

  • Seo, Han;Ji, Mi-Jung;An, Yong-Tea;Ju, Byeong-Kwon;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.663-668
    • /
    • 2012
  • In order to reduce the indium contents in transparent conducting oxide(TCO) thin films of $In_{1.6{\sim}1.8}Zn_{0.2}Sn_{0.2{\sim}0.4}O_3$ (IZTO), $In_{1.6}Zn_{0.2}Sn_{0.2}O_{3-{\delta}}$(IZTO) was prepared by replacing indium with Zn and Sn. The TCO films were deposited via RF-magnetron sputtering of the IZTO target at various deposition temperatures and its film characteristics were investigated. When deposited in an Ar atmosphere at $400^{\circ}C$, the electrical resistivity of the film decreased to $6.34{\times}10^{-4}{\Omega}{\cdot}cm$ and the optical transmittance was 80%. As the deposition temperature increased, the crystallinity of the IZTO film was enhanced. As a result, the electrical conductivity and transmittance properties were improved. This demonstrates the possibility of replacing ITO TCO film with IZTO.

Hydrogen shallow donors in ZnO and $SnO_2$ thin films prepared by sputtering methods

  • Kim, Dong-Ho;Kim, Hyeon-Beom;Kim, Hye-Ri;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.145-145
    • /
    • 2010
  • In this paper, we report that the effects of hydrogen doping on the electrical and optical properties of typical transparent conducting oxide films such as ZnO and $SnO_2$ prepared by magnetron sputtering. Recently, density functional theory (DFT) calculations have shown strong evidence that hydrogen acts as a source of n-type conductivity in ZnO. In this work, the beneficial effect of hydrogen incorporation on Ga-doped ZnO thin films was demonstrated. It was found that hydrogen doping results a noticeable improvement of the conductivity mainly due to the increases in carrier concentration. Extent of the improvement was found to be quite dependent on the deposition temperature. A low resistivity of $4.0{\times}10^{-4}\;{\Omega}{\cdot}cm$ was obtained for the film grown at $160^{\circ}C$ with $H_2$ 10% in sputtering gas. However, the beneficial effect of hydrogen doping was not observed for the films deposited at $270^{\circ}C$. Variations of the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. Theoretical calculations also suggested that hydrogen forms a shallow-donor state in $SnO_2$, even though no experimental determination has yet been performed. We prepared undoped $SnO_2$ thin films by RF magnetron sputtering under various hydrogen contents in sputtering ambient and then exposed them to H-plasma. Our results clearly showed that the hydrogen incorporation in $SnO_2$ leads to the increase in carrier concentration. Our experimental observation supports the fact that hydrogen acting as a shallow donor seems to be a general feature of the TCOs.

  • PDF

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

Transparent Rectangular Patch Antenna Using Square Metal Mesh Transparent Electrode (정방형 메탈메쉬 투명전극을 이용한 투명 사각 패치 안테나)

  • Kang, Seok Hyon;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • This paper reports the transparent electrode, which would be applied to transparent displays and smart glasses. Herein, a squared metal mesh with the most widely used copper wire in microwaves is studied for the alternating thin-film-type transparent and conducting indium tin oxide(ITO), with a low conductivity(sheet resistance > $5{\Omega}/sq.$). The electromagnetic performance of a patch antenna with metal mesh is analyzed. This paper presents the results of the optical(OT, optical transparent) and electrical(sheet resistance) characteristics of a squared metal mesh, which is a basic design. To improve the OT, copper wire(w=0.2 mm) is used in fabricating the squared metal mesh and the relationship between the OT and the antenna performance(radiation gain, radiation pattern) was analyzed according to the mesh size(l=1, 2 mm). The measurement results show that the antenna performance and the optical characteristic are in inverse proportion to each other. In real applications, the optical and electrical characteristics, and the costs of production are to be considered.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF