• Title/Summary/Keyword: Optical conductivity

Search Result 380, Processing Time 0.033 seconds

Properties and Trends in Conductive and Insulating Polymers - A Review (전도성 고분자와 절연성 고분자의 특성 및 동향)

  • Ayoung Jang;Jisu Lee;Sang Oh Lee;Jaewoong Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Conductive polymers are polymers that conduct electricity like metal conductors. Unlike typical organic polymers, they are polymers that have the electrical, magnetic, and optical properties of metals or semiconductors. For Example, these conductive polymers include Polypyrrole (PPy), Polyaniline (PANI), and Polythiophene (PT). On the other hand, Insulating polymers do not conduct electricity well while providing insulation, which is the opposite of conductivity. With the exception of conductive polymers, most polymers are non-conductors. Insulating polymers include polyimide (PI), polystyrene (PS), and poly(vinyl alcohol) (PVOH, PVA, or PVAl). Although many different polymers exist, we have simply illustrated the properties and recent developments of conductive and insulating polymers, which have opposite properties.

Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells

  • Helen Hejin Park
    • Nanomaterials
    • /
    • v.12 no.23
    • /
    • pp.4326-4359
    • /
    • 2022
  • Rapid development of the device performance of organic-inorganic lead halide perovskite solar cells (PSCs) are emerging as a promising photovoltaic technology. Current world-record efficiency of PSCs is based on tin oxide (SnO2) electron transport layers (ETLs), which are capable of being processed at low temperatures and possess high carrier mobilities with appropriate energy- band alignment and high optical transmittance. Modification of SnO2 has been intensely investigated by various approaches to tailor its conductivity, band alignment, defects, morphology, and interface properties. This review article organizes recent developments of modifying SnO2 ETLs to PSC advancement using surface and bulk modifications, while concentrating on photovoltaic (PV) device performance and long-term stability. Future outlooks for SnO2 ETLs in PSC research and obstacles remaining for commercialization are also discussed.

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.

The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.2-289.2
    • /
    • 2016
  • In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

  • PDF

Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials (전도성 물질 서스펜션을 함유한 마이크로캡슐)

  • Ihm, DaeWoo;Kwon, Won Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.

Soil Profile Measurement of Carbon Contents using a Probe-type VIS-NIR Spectrophotometer (프로브형 가시광-근적외선 센서를 이용한 토양의 탄소량 측정)

  • Kweon, Gi-Young;Lund, Eric;Maxton, Chase;Drummond, Paul;Jensen, Kyle
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.382-389
    • /
    • 2009
  • An in-situ probe-based spectrophotometer has been developed. This system used two spectrometers to measure soil reflectance spectra from 450 nm to 2200 nm. It collects soil electrical conductivity (EC) and insertion force measurements in addition to the optical data. Six fields in Kansas were mapped with the VIS-NIR (visible-near infrared) probe module and sampled for calibration and validation. Results showed that VIS-NIR correlated well with carbon in all six fields, with RPD (the ratio of standard deviation to root mean square error of prediction) of 1.8 or better, RMSE of 0.14 to 0.22%, and $R^2$ of 0.69 to 0.89. From the investigation of carbon variability within the soil profile and by tillage practice, the 0-5 cm depth in a no-till field contained significantly higher levels of carbon than any other locations. Using the selected calibration model with the soil NIR probe data, a soil profile map of estimated carbon was produced, and it was found that estimated carbon values are highly correlated to the lab values. The array of sensors (VIS-NIR, electrical conductivity, insertion force) used in the probe allowed estimating bulk density, and three of the six fields were satisfactory. The VIS-NIR probe also showed the obtained spectra data were well correlated with nitrogen for all fields with RPD scores of 1.84 or better and coefficient of determination ($R^2$) of 0.7 or higher.

Enhanced Stretchability of Gold and Carbon Nanotube Composite Electrodes (Au와 탄소나노튜브 복합체 전극의 연성 향상)

  • Woo, Jung-Min;Jeon, Joo-Hee;Kang, Ji-Yeon;Lee, Tae-Il;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.133-137
    • /
    • 2011
  • Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • Min, Hyeong-Seop;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

Controlled Synthesis of Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition

  • Han, Jaehyun;Lee, Jun-Young;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.630-630
    • /
    • 2013
  • Recently, atomically smooth hexagonal boron nitride(h-BN) known as a white graphene has drawn great attention since the discovery of graphene. h-BN is a III-V compound and has a honeycomb structure very similar to graphene with smaller lattice mismatch. Because of strong covalent sp2bonds like graphene, h-BN provides a high thermal conductivity and mechanical strength as well as chemical stability of h-BN superior to graphene. While graphene has a high electrical conductivity, h-BN has a highly dielectric property as an insulator with optical band gap up to 6eV. Similar to the graphene, h-BN can be applied to a variety of field, such as gate dielectric layers/substrate, ultraviolet emitter, transparent membrane, and protective coatings. However, up until recently, obtaining and controlling good quality monolayer h-BN layers have been too difficult and challenging. In this work, we investigate the controlled synthesis of h-BN layers according to the growth condition, time, temperature, and gas partial pressure. h-BN is obtained by using chemical vapor deposition on Cu foil with ammonia borane (BH3NH3) as a source for h-BN. Scanning Transmission Electron Microscopy (STEM, JEOL-JEM-ARM200F) is used for imaging and structural analysis of h-BN layer. Sample's surface morphology is characterized by Field emission scanning electron microscopy (SEM, JEOL JSM-7100F). h-BN is analyzed by Raman spectroscopy (HORIBA, ARAMIS) and its topographic variations by Atomic force microscopy (AFM, Park Systems XE-100).

  • PDF