• 제목/요약/키워드: Optical camera

검색결과 1,230건 처리시간 0.023초

인공위성 카메라 주반사경의 위상 최적화 (Topology Optimization of the Primary Mirror of a Multi-Spectral Camera)

  • 박강수;장수영;이응식;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.920-925
    • /
    • 2001
  • A study on the topology optimization of a multi-spectral camera for space-use is presented. A multi-spectral camera for space-use experiences degradation of optical image in the space, which can not be detected on the optical test bench on the earth. An optical surface deformation of a primary mirror, which is a principal component of the camera system, under the self-weight loading is an important factor affecting the optical performance of the whole camera system. In this study, topology optimization of the primary mirror of the camera is presented. Total mass of the primary mirror is given as a constraint to the optimization problem. The sensitivities of the objective function and constraint are calculated by direct differentiation method. Optimization procedure is carried out by an optimality criterion method using the sensitivities of the objective function and the constraint. As a preliminary example, topology optimization considering a self-weight loading is treated. For practical use, the polishing pressure is included as a loading in the topology optimization of the primary mirror. Results of the optimized design topology for the primary mirror with varying mass ratios are presented.

  • PDF

OCC에서의 이미지 처리 기술 (Image processing technique for Optical Camera Communication)

  • Nguyen, Trang;Le, Nam-Tuan;Jang, Yeong Min
    • 한국위성정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.47-52
    • /
    • 2014
  • 본 논문은 이미지 처리 기술을 이용한 광 카메라 통신(OCC: Optical Camera Communications) 기술을 제안한다. OCC 시스템의 구조 및 동작을 제안한다. 상용 30fps 카메라의 샘플링 동작에 의해 제한되는 데이터율을 증가시키기 위해 칼라 이미지 처리기술을 이용한 멀티칼러 전송기법을 제안한다. 멀티칼라 부호화 및 이미지 처리기반의 복호화 기법을 제안한다.

핸드폰 카메라용 플라스틱 렌즈 사출서형의 복굴절 해석 (Birefringent Analysis of Plastic Lens Injection Molding for Mobile Phone Camera)

  • 이시욱;조형한;홍진수;류민영
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.54-59
    • /
    • 2011
  • Optical properties in injection molded plastic lenses for mobile phone camera have been simulated using commercial program, 3D TIMON. Four plastic lenses are being used in mobile phone camera. The quality of photographs taken by mobile phone camera is strongly depends upon optical characteristics of lenses. The variety of optical properties has been investigated according to the injection conditions through the computer simulation. Consequently optimal injection conditions for four lenses have been determined and simulation results of birefringence have been compared with experiments.

초소형 카메라 흔들림 보정장치의 동특성 개선 (Improvement of Dynamic Characteristics of an Optical Image Stabilizer in a Compact Camera)

  • 송명규;손동훈;박노철;박경수;박영필
    • 한국소음진동공학회논문집
    • /
    • 제21권2호
    • /
    • pp.178-185
    • /
    • 2011
  • Optical image stabilization is a device to compensate the camera movement in the exposure time. The compensation is implemented by movable lens or image sensor that adjusts the optical path to the camera movement. Generally, the camera is moved by a handshake, thus the handshake is considered as an external disturbance. However, there are many other vibrations such as car and train vibration. In this paper, the optical image stabilization system in high frequency region is presented. Notch filter and lead compensator are designed and applied to improve the stability without changing the actuator. To verify the performance of the optical image stabilization system in high frequency region, the experiment equipment with moving object is established. It is confirmed that the opticalimage stabilization system does not diverge at the resonance frequency.

모바일 카메라 모듈용 볼베어링 방식 OIS 액추에이터 설계 (Design of Ball Bearing Type OIS Actuator for Mobile Camera Module)

  • 송명규;손동훈;박노철;박경수;박영필;임수철
    • 한국소음진동공학회논문집
    • /
    • 제20권4호
    • /
    • pp.361-372
    • /
    • 2010
  • Optical image stabilization is a technique to compensate the image blurring caused by some vibrations of camera at the exposure time. Pitching and yawing of camera are sensitive to the image quality so they are usually compensated by optical image stabilization. Corresponding pitching and yawing of a camera, a lens or the image sensor is translated in two-axis direction and then the optical path of camera is adjusted. In this paper, two-axis OIS actuator for mobile camera module is suggested and designed. The actuator is a voice-coil actuator that uses the electromagnetic force of voice-coil to make compensation motions. And ball bearing is used to reduce friction force. Magnetic attractive force between magnets and yokes acts as a preload and magnet springs. Prototype actuator is fabricated to measure the friction force and to verify the feasibility of the OIS actuator with ball bearing. At last, the actuator is improved in consideration of driving force and friction force. Design of experiments is used for designing the actuator.

REFOCUSING FOR ON-ORBIT MTF COMPENSATION OF REMOTE SENSING CAMERA

  • Jang Hong-Sul;Jeong Dae-Jun;Lee Seunghoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.601-603
    • /
    • 2005
  • Refocusing methods are used to compensate optical performance degradation of high resolution satellite camera during on-orbit operation. Due to mechanical vibration during launch and thermal vacuum environment of space where camera is exposed, the alignment of optical system may have error. The focusing error is dominant of misalignment and caused by the de-space error of secondary mirror of catoptric camera, which is most sensitive to vibration and space environment. The high resolution camera of SPOT, Pleiades and KOMPSAT2 have refocusing device to adjust focusing during orbital operation while QuickBird of US does not use on orbit refocusing method. For the Korsch type optical configuration which is preferred for large aperture space remote sensing camera, secondary mirror and folding mirror are available as refocusing element.

  • PDF

Optical Noise Removal in the Focal Plane of the Spaceborne Camera

  • Park, Jun-Oh;Jang, Won-Kweon;Kim, Seong-Hui;Jang, Hong-Sul;Lee, Seung-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.278-282
    • /
    • 2011
  • We discuss two possible optical noise sources in an electro-optic camera loaded on a low earth orbit satellite. The first noise source was a reflection at the window for signal rays incident upon the window which is placed before the FPA plane. The second noise source came from a reflection at the surface of the FPA cell when the signal flux is not entirely absorbed. We investigate the noise generation processes for two optical noise sources, and a parametric solution is used to estimate the optical noise effects.

휴대폰 카메라 모듈의 조립공차 개선 시스템에 관한 연구 (The Study on the System of Improving the Assembly Tolerance of Cellphone Camera Module)

  • 예인수;정선환;최성대;현동훈
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.57-63
    • /
    • 2010
  • Tolerance analysis is one of the most important processes to improve the image quality of products. High resolution camera module for mobile phones needs precision assembly technology since the module becomes smaller and thinner. This paper will focus on the unit tolerance and the assembly tolerance which can affect the performance of the module. Lens shading and relative illumination were used to evaluate the optical axis scatter for each component on camera and estimate the assembly yield rate based on the evaluation result. A program was developed to analyze the impact on optical axis by each module, then to optimize the dimensions and tolerance for reducing the scatter of optical axis assembly. Through the simulation, though a rate of relative illumination was declined in where optical axis is displaced $100{\mu}m$ from sensor center, MTF performance is not influenced by increasing in optical axis displacement. It was seen that assembly yield was improved in result of simulation after correcting optical axis tolerance.

벡터내적 기반 카메라 자세 추정 (Camera Rotation Calculation Based on Inner Product)

  • 전재춘
    • 대한원격탐사학회지
    • /
    • 제24권6호
    • /
    • pp.641-644
    • /
    • 2008
  • 본 저자가 제안한 카메라 외부표정에서 광속조정법에 기반한 카메라 자세계산 방법을 보완하기위해 (전재춘과 Shankar, 2007, 2008), 본 논문은 카메라 자세를 벡터내적으로 결정하는 방법을 소개한다. 카메라 위치를 기준으로 각 지상기준점의 방향벡터와 카메라 광축 단위벡터간의 사잇각을 통하여 이 단위벡터를 계산하는 것이다. 카메라 위치는 벡터내적에 의해 계산된다. 카메라의 수평/수직 단위벡터는 Yakimovsky 와 Cunningham(1978)의 카메라 모델(CAHV)을 이용 하였다.

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.