• Title/Summary/Keyword: Optical and structural properties

Search Result 936, Processing Time 0.028 seconds

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.

The ionization energy and lattice parameters of Co- and Ce-doped cubic zirconia (YSZ) single crystal (Co와 Ce를 첨가한 큐빅지르코니아(YSZ) 단결정의 이온화에너지 및 격자상수)

  • Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.159-163
    • /
    • 2010
  • Co-(0.5 mol%) and Ce-(0~0.3 mol%) doped cubic zirconia ($ZrO_2:Y_2O_3$=64:36 mol%) single crystals grown by a skull melting method were heat-treated in $N_2$ at $1200^{\circ}C$ for 3 hrs. The brown-colored as-grown single crystals were changed into either green or blue color after the heat treatment. Before and after the heat treatment, the YSZ (yttriastabilized zirconia) single crystals were cut for wafer form (${\phi}7mm{\times}t2mm$) and round brilliant cut ($\phi$ 12 mm). The optical and structural properties were examined by UV-VIS spectrophotometer and X-ray diffraction. Absorption by $Ce^{3+}(^2F_{5/2},\;_{7/2}(4f){\rightarrow}^2T_g(5d^1)),\;Co^{2+}(^4A_2(^4F){\rightarrow}^4T_1(^4F)$ or $^4T_1(^4P))$ and $Co^{3+}$, change of ionization energy and lattice parameter were confirmed.

A Study on the High Quality and Low Cost Fabrication Technology of ZnO Thin Films for Solar Cell Applications (태양전지 응용을 위한 고품위 및 저가격 ZnO 박막 제조에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.191-196
    • /
    • 2010
  • Aluminum doped zinc oxide (AZO) films have been prepared on Coming 7059 glass substrates by r.f. magnetron sputtering method. A powder target instead of a conventional sintered ceramic target was used in order to improve the utilization efficiency of the target and reduce the cost of the film deposition process. The influence of sputter pressure on the structural, electrical, and optical properties of AZO films were studied. The AZO films had hexagonal wurtzite structure with a preferred c-axis orientation, regardless of sputter pressure and target types. The crystallinity and degree of orientation was increased by increasing the sputter pressure. For higher sputtering pressures, a reduction of the resistivity was observed due to a increase on the mobility and the carrier concentration. The lowest resistivity of $6.5{\times}10^{-3}\;{\Omega}-cm$ and the average transmittance of 80% can be obtained for films deposited at 15 mTorr.

Effect of the Position of Azobenzene Moiety on the Light-Driven Anisotropic Actuating Behavior of Polyvinylalcohol Polymer Blend Films (아조벤젠 분자의 사슬 내 위치에 따른 고분자 블렌드 박막의 비등방성 광 변형에 관한 연구)

  • Kim, Hyong-Jun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Structural changing materials which can induce the physical deformation of materials are interesting research topics with various potential applications. Particularly, light among many driving mechanisms is a non-contact energy source, hence the light-responsive system can be used where non-destructive, local irradiation, and remote control is needed. Here, a mainchain azobenzene polymer is synthesized and its physical and optical properties are observed and compared to that of a polymer having a light-responsive azobenzene moiety on its side chain. Further dispersion onto polyvinylalcohol hydrogel is made and its dual stability and actuation are observed upon UV-visible light irradiation. Extended azobenzene polymer blend films show an anisotropic light-actuation with non-polarized UV light at room temperature. This physical shape change is quite reversible and occurs at lower temperature than that of any other reported systems including liquid crystalline elastomers. It is successfully demonstrated that the simple physical azobenzene/polymer blending has a very good actuation compared to that of LCEs which need an elaborate chemical design and it can be further used in the areas requiring a dimensional shape change.

Electrical mechanism analysis of $Al_2O_3$ doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering (원통형 타겟 형태의 DC 마그네트론 스퍼터링을 이용한 산화 아연 박막의 전기적 기제에 대한 분석)

  • Jang, Juyeon;Park, Hyeongsik;Ahn, Sihyun;Jo, Jaehyun;Jang, Kyungsoo;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • Cost efficient and large area deposition of superior quality $Al_2O_3$ doped zinc oxide (AZO) films is instrumental in many of its applications including solar cell fabrication due to its numerous advantages over ITO films. In this study, AZO films were prepared by a highly efficient rotating cylindrical dc magnetron sputtering system using AZO target, which has a target material utilization above 80%, on glass substrates in argon ambient. A detailed analysis on the electrical, optical and structural characteristics of AZO thin films was carried out for solar cell application. The properties of films were found to critically depend on deposition parameters such as sputtering power, substrate temperature, working pressure, and thickness of the films. A low resistivity of ${\sim}5.5{\times}10-4{\Omega}-cm$ was obtained for films deposited at 2kW, keeping the pressure and substrate temperature constant at 3 mtorr and $230^{\circ}C$ respectively, mainly due to an increase in carrier mobility and large grain size which would reduce the grain boundary scattering. The increase in carrier mobility with power can be attributed to the columnar growth of AZO film with (002) preferred orientation as revealed by XRD analysis. The AZO films showed a high transparency of>87% in the visible wavelength region irrespective of deposition conditions. Our results offers a cost-efficient AZO film deposition method which can fabricate films with significant low resistivity and high transmittance that can find application in thin-film solar cells.

  • PDF

Property Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리에 따른 Diamond-like Carbon (DLC) 박막의 특성변화)

  • Park, Ch.S.;Koo, K.H.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Diamond-like carbon (DLC) films is a metastable form of amorphous carbon containing a significant fraction of Sp3 bond. DLC films have been characterized by a range of attractive mechanical, chemical, tribological, as well as optical and electrical properties. In this study DLC films were prepared by the RF magnetron sputter system on $SiO_2$ substrates using graphite target. The effects of the post annealing temperature on the Property variation of the DLC films were examined. The DLC films were annealed at temperatures ranging from 300 to $500^{\circ}C$ using rapid thermal process equipment in vacuum. The variation of electrical property and surface morphology as a function of annealing treatment was investigated by using a Hall Effect measurement and atomic force microscopy. Raman and X-ray photoelectron spectroscopy analyses revealed a structural change in the DLC films.

Transparent Oxide Thin Film Transistors with Transparent ZTO Channel and ZTO/Ag/ZTO Source/Drain Electrodes

  • Choi, Yoon-Young;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.127-127
    • /
    • 2011
  • We investigate the transparent TFTs using a transparent ZnSnO3 (ZTO)/Ag/ZTO multilayer electrode as S/D electrodes with low resistivity of $3.24{\times}10^{-5}$ ohm-cm, and high transparency of 86.29% in ZTO based TFTs. The Transparent TFTs (TTFTs) are prepared on glass substrate coated 100 nm of ITO thin film. On atomic layer deposited $Al_2\;O_3$, 50 nm ZTO layer is deposited by RF magnetron sputtering through a shadow mask for channel layer using ZTO target with 1 : 1 molar ratio of ZnO : $SnO_2$. The power of 100W, the working pressure of 2mTorr, and the gas flow of Ar 20 sccm during the ZTO deposition. After channel layer deposition, a ZTO (35 nm)/Ag (12 nm)/ZTO(35 nm) multilayer is deposited by DC/RF magnetron sputtering to form transparent S/D electrodes which are patterned through the shadow mask. Devices are annealed in air at 300$^{\circ}C$ for 30 min following ZTO deposition. Using UV/Visible spectrometer, the optical transmittances of the TTFT using ZTO/Ag/ ZTO multilayer electrodes are compared with TFT using Mo electrode. The structural properties of ZTO based TTFT with ZTO/Ag/ZTO multilayer electrodes are analyzed by high resolution transmission electron microscopy (HREM) and X-ray photoelectron spectroscopy (XPS). The transfer and output characterization of ZTO TTFTs are examined by a customized probe station with HP4145B system in are.

  • PDF

Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods

  • Kim, Soaram;Park, Hyunggil;Nam, Giwoong;Yoon, Hyunsik;Kim, Jong Su;Kim, Jin Soo;Son, Jeong-Sik;Lee, Sang-Heon;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3335-3339
    • /
    • 2013
  • Boron-doped ZnO (BZO) nanorods were grown on quartz substrates using hydrothermal synthesis, and the temperature-dependence of their photoluminescence (PL) was measured in order to investigate the origins of their PL properties. In the UV range, near-band-edge emission (NBE) was observed from 3.1 to 3.4 eV; this was attributed to various transitions including recombination of free excitons and their longitudinal optical (LO) phonon replicas, and donor-acceptor pair (DAP) recombination, depending on the local lattice configuration and the presence of defects. At a temperature of 12 K, the NBE produces seven peaks at 3.386, 3.368, 3.337, 3.296, 3.258, 3.184, and 3.106 eV. These peaks are, respectively, assigned to free excitons (FX), neutral-donor bound excitons ($D^{\circ}X$), and the first LO phonon replicas of $D^{\circ}X$, DAP, DAP-1LO, DAP-2LO, and DAP-3LO. The peak position of the FX and DAP were also fitted to Varshni's empirical formula for the variation in the band gap energy with temperature. The activation energy of FX was about ~70 meV, while that of DAP was about ~38 meV. We also discuss the low temperature PL near 2.251 eV, related to structural defects.

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

  • Kim, Hyun Sik;Kang, Soon Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2067-2072
    • /
    • 2013
  • Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.

Color-change for ligand field of cobalt doped yttria stabilized cubic zirconia (YSZ) single crystal (Cobalt가 첨가된 이트리아 안정화 큐빅지르코니아(YSZ) 단결정의 리간드장에 따른 색상변화)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • Cobalt ($Co^{2+}$) doped yttria stabilized cubic zirconia (YSZ, $Y_2O_3\;:\;25{\sim}50wt%$) single crystals grown by a skull melting method were heat-treated in $N_2\;at\;1000^{\circ}C$ for 5 hrs. The reddish brown single crystals were changed into either violet or blue color, respectively. Before and after heat treatment, the Co-doped YSZ crystals cut for wafers (${\phi}6.5{\times}t\;2mm$) and round brilliant (${\phi}10mm$). The optical and structural properties were examined by UV-VIS spectrophotometer and XRD. These results are analyzed absorption by $Co^{2+}\;(^4A_2(^4F)\to{^4P})\;and\;Co^{3+}$, change of energy gap and lattice parameter.