• Title/Summary/Keyword: Optical and structural properties

Search Result 936, Processing Time 0.032 seconds

Effect of Annealing under Antimony Ambient on Structural Recovery of Plasma-damaged InSb(100) Surface

  • Seok, Cheol-Gyun;Choe, Min-Gyeong;Jeong, Jin-Uk;Park, Se-Hun;Park, Yong-Jo;Yang, In-Sang;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.203-203
    • /
    • 2014
  • Due to the electrical properties such as narrow bandgap and high carrier mobility, indium antimonide (InSb) has attracted a lot of attention recently. For the fabrication of electronic or photonic devices, an etching process is required. However, during etching process, enegetic ions can induce structural damages on the bombarded surface. Especially, InSb has a very weak binding energy between In atom and Sb stom, it can be easily damaged by impingement of ions. In the previous work, to evaluate the surface properties after Ar ion beam etching, the plasma-induced structural damage on the etched InSb(100) surface had been examined by resonant Raman spectroscopy. As a result, we demonstrated the relation between the enhanced transverse optical(TO) peak in the Raman spectrum and the ion-induced structral damage near the InSb surface. In this work, the annealing effect on the etched InSb(100) surface has investigated. Annealing process was performed at $450^{\circ}C$ for 10 minute under antimony ambient. As-etched InSb(100) surface had shown a strongly enhanced TO scattering intensity in the Raman spectrum. However, the annealing process with antimony flowing caused the intensity to recover due to the structural reordering and the reduction of antimony vacancies. It proves that the origin of enhanced TO scattering is Sb vacancies. Furthermore, it shows that etching-induced damage can be cured effectively by the following annealing process under Sb ambient.

  • PDF

Effects of Annealing Condition on Properties of ITO Thin Films Deposited on Soda Lime Glass having Barrier Layers (Barrier층을 갖는 Soda lime glass 기판위에 증착된 ITO박막의 Annealing 조건에 따른 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Jung-Ho;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.66-66
    • /
    • 2008
  • Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.

  • PDF

The change of matter properties of paper cultural heritage by wet cleaning (습식크리닝에 의한 지류문화재의 물성변화)

  • Cheon, Ju-hyun;Jang, Eun-ji
    • Conservation Science in Museum
    • /
    • v.6
    • /
    • pp.73-83
    • /
    • 2005
  • To understand the influence of wet cleaning performed in the course of preserving paper items, the change of matter properties by before and after wet cleaning was observed. Specifically, structural and optical qualities and strength were measured. The result showed that wet cleaning caused a substance change in the paper items and particularly weakened the structure material of pigments, Chinese ink, dyes, etc.

Effect of Substrate Temperature on the Properties of ZnO Transparent conducting Thin Film Prepared by the Vapour Spraying Method (분사증기법에 의해 형성된 ZnO 투명전도막에서 기판온도가 막 특성에 미치는 영향)

  • 이환수;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.436-447
    • /
    • 1994
  • ZnO transparent conducting thin film, which is a strong candidate for a transparent electrical contact in optoelectronic devices, was prepared by the vapour spraying method on the slide glass in nitrogen ambient at the atmospheric pressure. The structural, optical and electrical properties of films show a strong dependence on substrate temperature, and the optimum range of deposition temperature existed to obtain TCO(Transparent Conducting Oxide) films. At the higher temperatures, milky films were obtained. In such optimum range, the bandgap in ZnO films was determined from the spectral dependence of absorption coefficient and electrical characteristics were characterized with by the Hall mobility and carrier concentration.

  • PDF

Optical and Electrical Properties of Sputtered Al Doped ZnO Thin Films with Various Working Pressure (공정 압력에 따라 스퍼터된 Al 도핑 ZnO 박막의 광학적, 전기적 특성)

  • Kim, Deok Kyu;Kim, Hong Bae
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.257-261
    • /
    • 2013
  • We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films using RF magnetron sputtering with various working pressure. To find optimal properties of AZO for transparent conducting oxides, the working pressure in sputtering process was varied as 0.07 Torr, 0.02 Torr, and 0.007 Torr, respectively. As working pressure increased, the crystallinity of AZO thin film was improved, the surface roughness of AZO thin film decreased. The transmittance of the film was over 80% in the visible light range regardless of the changes in working pressure. In case of 0.007 Torr, best electrical properties was shown due to the reduction of oxygen absorption by decreasing surface roughness.

Conformal Zinc Oxide Thin Film Deposition on Graphene using molecular linker by Atomic Layer Deposition

  • Park, Jin-Seon;Han, Gyu-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.2-280.2
    • /
    • 2016
  • The graphene, a single atomic sheet of graphite, has attracted tremendous interest owing to its novel properties including high intrinsic mobility, optical transparency and flexibility. However, for more diverse application of graphene devices, it is essential to tune its transport behavior by shifting Dirac Point (DP) of graphene. So, in the following context, we suggest a method to tune structural and electronic properties of graphene using atomic layer deposition. By atomic layer deposition of zinc oxide (ZnO) on graphene using 4-mercaptophenol as linker, we can fabricate n-doped graphene. Through ${\pi}-{\pi}$ stacking between chemically inert graphene and 4-mercaptophenol, conformal deposition of ZnO on graphene was enabled. The electron mobility of graphene TFT increased more than 3 times without considerably decreasing the hole mobility, compared to the pristine graphene. Also, it has high air stability. This ZnO doping method by atomic layer deposition can be applicable to large scale array of CVD graphene TFT.

  • PDF

The PZMN-BT-PT ceramics for Electrostrictive Actuator (전왜 액츄에이터용 PZMN-BT-PT계 세라믹스에 관한 연구)

  • 윤현상;윤광희;박용욱;최형욱;백동수;박창엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.620-626
    • /
    • 1994
  • As the electrostrictive actuator for optic control, PZN-BT-PT ceramics were investigated for the influences of sintering conditions on the structural, electrostrictive properties and the optical properties of Fabry-perot Interferometer using eletrostrictive ceramics. The specimen SS15T, sintered 1hr at 1150$^{\circ}C$, is sutible for eletrostrictive actuator because its piezoelectric constants(dS131T) and strain(XS131T) at dc 10kV/cm had the higest value of 175${\times}$10S0-12TC/N, -255${\times}$10S0-6TΔl/l respectively. As the dc electric field increased, the interference effect of Fabry-Perot Interferometer was increased. The most intense interference fringe and the maximum power of 160${\mu}$W were observed at dc 6kV/cm. Thus it was considered that specimen SS15T could be used as the electrostrictive actuator for optic control.

Influence of Ammonia and Na2EDTA on Properties of Chemical Bath Deposited ZnS Thin Films (화학적 용액성장법에 의한 ZnS 박막의 제조 시 ammonia 및 Na2EDTA의 영향)

  • Kim, Gwan-Tae;Lee, Hae-Ki;Park, Byung-Ok
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.3
    • /
    • pp.105-110
    • /
    • 2013
  • ZnS thin films were prepared on glass substrate by using chemical bath deposition method. The influence of ammonia ($NH_4OH$) and $Na_2EDTA$ ($Na_2C_{10}H_{16}N_2O_8$) as complexing agents on structural and optical properties of ZnS thin films were investigated. Zinc acetate dihydrate ($Zn(CH_3COO)_2{\cdot}2H_2O$) and thiourea ($H_2NCSNH_2$) were used as a starting materials and distilled water was used as a solvent. All ZnS thin films, regardless of a kind of complexing agents, had the hexagonal structure (${\alpha}$-ZnS) and had a preferred <101> orientation. ZnS thin films, with 4 M ammonia and with 4 M ammonia and 0.1 M $Na_2EDTA$, had the highest <101> peak intensity. In addition, their average particle size are 280 nm and 220 nm, respectively. The average optical transmittances of all films were higher than 60% in the visible range. The optical direct band gap values of films were about 3.6~3.8 eV.

Properties of Indium Zinc Oxide Thin Films Prepared by Pulsed Laser Deposition (펄스레이저증착법으로 증착한 Indium Zinc Oxide 박막의 물성)

  • Choi, Hak-Soon;Jeong, Il-Kyo;Shin, Mun-Soo;Kim, Heon-Oh;Kim, Yong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.537-542
    • /
    • 2011
  • Recently, n-InZnO/p-CuO oxide diode has attracted great attention due to possible application for selector device of 3-dimensional cross-point resistive memory structures. To investigate the detailed properties of InZnO (IZO), we have deposited IZO films on the fused quartz substrate using PLD (pulsed laser deposition) method at oxygen pressure of 1~100 mTorr and substrate temperature of RT$\sim600^{\circ}C$. The influence of oxygen pressure and substrate temperature on structural, optical and electrical of IZO films is analyzed using XRD (x-ray diffraction), SEM (scanning electron microscopy), UV-Vis spectrophotometry, spectroscopic ellipsometry (SE) and hall measurements. The XRD results shows that the deposited thin films are polycrystalline over $300^{\circ}C$ of substrate temperature independent of oxygen pressure. The resistivity of films was increased as oxygen pressure and substrate temperature decrease. The thickness and optical constants of the deposited films measured with UV-Vis spectrophotometer were also compared with those of broken SEM and SE results.

Influence of Ni Thin Film Position on the Opto-electrical Properties of GZO Films (Ni 박막 위치에 따른 GZO 투명전도막의 전기광학적 물성 변화)

  • Mun, Hyun Joo;Jeon, Jae-Hyun;Gong, Tae-Kyung;Seo, Ki-Woong;Oh, Jeong Hyun;Kim, Sun-Kyung;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.121-125
    • /
    • 2015
  • GZO single layer, Ni buffered GZO(GZO/Ni), Ni intermediated GZO (GZO/Ni/GZO) and Ni capped GZO (Ni/GZO) films were prepared on poly-carbonate (PC) substrates by RF and DC magnetron sputtering without intentional substrate heating and then the influence of the Ni (2 nm thick) thin film on the optical, electrical and structural properties of GZO films were investigated. As deposited GZO single layer films show the optical transmittance of 81.3% in the visible wavelength region and a resistivity of $1.0{\times}10^{-2}{\Omega}cm$, while GZO/Ni/GZO trilayer films show a lower resistivity of $6.4{\times}10^{-4}{\Omega}cm$ and an optical transmittance of 74.5% in this study. Based on the figure of merit, it can be concluded that the intermediated Ni thin film effectively enhances the opto-electrical performance of GZO films for use as transparent conducting oxides in flexible display applications.