• Title/Summary/Keyword: Optical and structural properties

Search Result 936, Processing Time 0.032 seconds

Microstructure of ZnO:Ga Thin Films by RF magnetron sputtering (RF 스퍼터링법에 의한 ZnO:Ga 박막의 미세구조)

  • Kim, Byung-Sub;Lee, Sung-Wook;Lim, Dong-Gun;Park, Min-Woo;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.477-480
    • /
    • 2004
  • Ga doped zinc oxide films (ZnO:Ga) were deposited on glass substrate by RF magnetron sputtering from a ZnO target mixed with $Ga_O_3$. The effects of RF discharge power on the electrical, optical and structural properties were investigated experimentally. The structural and electrical properties of the film are highly affected by the variation of RF discharge power. The lowest electrical resistivity of $4.9{\times}10^{-4}\;\Omega-cm$ were obtained with the film deposited from 3 wt% of $Ga_2O_3$ doped target and at 200 W in RF discharge power. The transmittance of the 900 nm thin film was 91.7% in the visible waves. The effect of annealing on the as-deposited film was also studied to improve the electrical resistivity of the ZnO:Ga film.

  • PDF

Structural, Optical, and Chemical Properties of Cadmium Phosphate Glasses

  • Chung, Jae-Yeop;Kim, Jong-Hwan;Choi, Su-Yeon;Park, Hyun-Joon;Hwang, Moon-Kyung;Jeong, Yoon-Ki;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.128-132
    • /
    • 2015
  • In this study, we prepared cadmium phosphate glasses with various compositions, given by $xCdO-(100-x)P_2O_5$ (x = 10-55 mol%), and analyzed their Fourier transform infrared spectra, dissolution rate, thermal expansion coefficient, glass transition temperature, glass softening temperature, and optical band gap. We found that the thermal expansion coefficient and dissolution rate increased while the glass transition temperature and glass softening temperature decreased with increasing CdO content. These results suggest that CdO acts as a network modifier in binary phosphate glass and weakens its structure.

Properties of Indium Tin Oxide Transparent Conductive Thin Films at Various Substrate and Annealing Temperature

  • Jeong, Woon-Jo;Kim, Seong-Ku;Kim, Jong-Uk;Park, Gye-Choon;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • ITO thin films with thickness of 3000 $\AA$ were fabricated by rf magnetron sputtering system with a 10 mol % SnO$_2$-90 mol % In$_2$O$_3$target at various substrate temperature and annealing temperature in air. And we investigated structural, electrical and optical characteristics of them. It's resistivity, carrier concentration and Hall mobility was 2$\times$10$\^$-4/ Ωcm, 7$\times$10$\^$20/∼ 9$\times$10$\^$20/ cm$\^$-3/ and 21∼23 cm$^2$/V$.$sec respectively. And it's optical transmittance and energy band gap was above 85 % in the visible range and 3.53 eV respectively.

Effect of Annealing on a-Si:H Thin Films Fabricated by RF Magnetron Sputtering (RF 스퍼터를 이용하여 제작된 a-Si:H 박막의 어닐링 효과에 관한 연구)

  • Kim, Do-Yun;Kim, In-Soo;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.102-107
    • /
    • 2009
  • The effect of annealing under argon atmosphere on hydrogenated amorphous silicon (a-Si:H) thin films deposited at room temperature and $300^{\circ}C$ using Radio Frequency (RF) magnetron sputtering has been investigated. For the films deposited at room temperature, there was not any increase in hydrogen content and optical band gap of the films, and as a result, quality of the films was not improved under any annealing conditions. For the films deposited at $300^{\circ}C$, on the other hand, significant increases in hydrogen content and optical band gap were observed, whereas values of microstructure parameter and dark conductivity were decreased upon annealing below $300^{\circ}C$. In this study, it was proposed that the Si-HX bonding strength is closely related to deposition temperature. Also, the improvement in optical, electrical and structural properties of the films deposited at $300^{\circ}C$ was originated from thermally activated hydrogen bubbles, which were initially trapped at microvoids in the films.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Effects of Boron Doping on the Structural and Optical Properties of CdS Thin Films (보론 도핑된 CdS 박막의 구조적 및 광학적 특성)

  • Lee, Jae-Hyeong;Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1032-1037
    • /
    • 2003
  • Boron-doped CdS thin films were chemically deposited onto glass substrates. X-ray diffraction (XRD), photoluminescence (PL), and Raman techniques were used to evaluate the quality of B-doped CdS films. XRD results have confirmed that B-doped CdS films has a hexagonal structure with a preferential orientation of the (002) plane. The PL spectra for all samples consists of two prominent broad bands around 2.3 eV (green emission) and 1.6 eV (red emission) and the higher doping concentrations gradually decreased the green emission and red emission. Raman analysis has shown that undoped films have structure superior to those of B-doped CdS films. Boron doping into CdS films improved the optical transmittance and increased the optical band gap.

Electrical, Optical and Structural Properties of ZrO2 and In2O3 Co-sputtered Electrdoes for Organic Photovoltaics (OPVs)

  • Cho, Da-Young;Shin, Yong-Hee;Chung, Kwun-Bum;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.473.1-473.1
    • /
    • 2014
  • We report on the characteristics of Zr-doped $In_2O_3$ (IZrO) films prepared by DC-RF magnetron cosputtering of $In_2O_3$ and $ZrO_2$ targets for use as a transparent electrode for high efficient organic solar cells (OSCs). The effect of $ZrO_2$ doping power on electrical, optical, structural, and surface morphology of the IZrO film was investigated in detail. At optimized $ZrO_2$ RF power of 50 W, the IZrO film exhibited a low sheet resistance of 20.71 Ohm/square, and a high optical transmittance of 83.9 %. Furthermore, the OSC with the IZrO anode showed a good cell-performance: fill factor of 61.71 %, short circuit current (Jsc) of $8.484mA/cm^2$, open circuit voltage (Voc) of 0.593 V, and power conversion efficiency (PCE) of 3.106 %. In particular, the overall OSC characteristics of the cell with the IZrO anode were comparable to those of the OSC with the conventional Sn-doped $In_2O_3$ (FF of 65.03 %, Jsc of $8.833mA/cm^2$, Voc of 0.608 V, PCE of 3.495 %), demonstrating that the IZrO anode is a promising alternative to ITO anode in OSCs.

  • PDF

Optical and Electrochemical Property of Self-Assembled Monolayers Containing Viologen Derivative by EQCM Study (EQCM법을 이용한 자기조립된 Viologen 유도체의 광학적 특성 및 전기화학적 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1305-1306
    • /
    • 2006
  • A monolayer assembly of anthracene-viologen linked thiol ($AMVC_{8}SH$) was fabricated on a gold electrode by self-assembly method. Structural property of the self-assembled monolayers (SAMs) was carried out by optical and electrochemical method. Firstly, we investigated PL spectrum and UV/visible absorption for the optical properties in solution state. Secondly, we determined the characteristics of charge transfer in different electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). From the data, the PL spectrum and UV/visible absorption were observed and the well-defined shape peaks were nearly equal charges during redox reactions and existed to an excellent linear relationship between the scan rates and existed to currents. The mass change was determined during redox reaction. The mass change behavior of SAMs was not only governed by the mobility of the ion in the viologen but the valence of the ion in the electrolyte solution.

  • PDF

Study on properties of eco-friendly reduction agents for the reduced graphene oxide method

  • Na, Young-il;Song, Young Il;Kim, Sun Woo;Suh, Su-Jeong
    • Carbon letters
    • /
    • v.24
    • /
    • pp.1-9
    • /
    • 2017
  • We studied the basic properties and fabrication of reduced graphene oxide (rGO) prepared using eco-friendly reduction agents in the graphene solution process. Hydrazine is generally used to reduce graphene oxide (GO), which results in polluting emissions as well as fixed nitrogen functional groups on different defects in the graphene sheets. To replace hydrazine, we developed eco-friendly reduction agents with similar or better reducing properties, and selected of them for further analysis. In this study, GO layers were produced from graphite flakes using a modified Hummer's method, and rGO layers were reduced using hydrazine hydrate, L-ascorbic acid, and gluconic acid. We measured the particle sizes and the dispersion stabilities in the rGO dispersed solvents for the three agents and analyzed the structural, electrical, and optical properties of the rGO films. The results showed that the degree of reduction was in the order L-ascorbic acid ${\geq}$ hydrazine > glucose. GO reduced using L-ascorbic acid had a sheet resistance of $121k{\Omega}/sq$, while that reduced using gluconic acid showed worse electrical properties than the other two reduction agents. Therefore, L-ascorbic acid is the most suitable eco-friendly reduction agent that can be substituted for hydrazine.

The Properties of Atomic Layer Deposited Al-Doped ZnO Films Using H2O and O3 As Oxidants (H2O, O3 반응기체로 원자층 증착된 Al-doped ZnO 박막의 특성)

  • Kim, Min Yi;Cho, Young Joon;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.652-657
    • /
    • 2015
  • We have investigated the properties of Al-doped ZnO (AZO) thin films as functions of atomic layer deposition (ALD) oxidants. AZO transparent conducting oxides (TCOs) layer was deposited by ALD with adding trimethylaluminum (TMA) and diethylzinc (DEZn). AZO films were deposited at low temperature with $H_2O$ and $O_3$ as oxidants. Electrical, optical and structural properties of AZO thin films were investigated by 4-point probe, Hall effect measurement, UV-VIS, and AFM. Microstructure and atomic bonding states were investigated by HRXRD and XPS. The resistivity of AZO films grown using $H_2O$ was lower than the films grown using $H_2O$ and $O_3$, by approximately two orders of magnitude. The differences in oxygen vacancy peak intensity of AZO films were correlated to the optical and electrical properties.