• Title/Summary/Keyword: Optical and structural properties

Search Result 936, Processing Time 0.033 seconds

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

A Study on Properties of ZnO:Al Films on Polyimide Substrate (Polyimide 기판을 이용한 ZnO:Al 박막 특성에 관한 연구)

  • Lee, Dong-Jin;Lee, Jae-Hyeong;Ju, Jung-Hun;Lee, Jong-In;Jung, Hak-Kee;Jung, Dong-Su;Song, Jun-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.666-670
    • /
    • 2007
  • Aluminuim doped zinc oxide(ZnO:AL)Films have been prepared on Polyimide(PI) and Coming 7059 glass substrates by r.f. magnetron sputtering method. The structural of the ZnO:Al films were studied in accordance with various deposition R.F power and working pressure by XRD, SEM. And The electrical and optical properties of ZnO:Al films were characterized by Hall effect and UN visible spectrophotometer measurements, ZnO:Al films had were hexagonal wurtzite structure and dominant c-axis orientation. The R.f power and working pressure for optimum condition to fabricate the transparent conductive films using a PI substrate were 2 mTorr and 100W, respectively. The resistivity of the ZnO:Al films prepared under this condition were $9.6{\times}10^{-4}{\Omega}cm$. The optical transmittance of 400nm thick films at 550nm is ${\sim}85 %$.

Correlation between optical properties and microstructure of undoped Zno thin films grown by PLD (PLD 법으로 성장한 undoped ZnO 박막의 광학적 특성과 미세구조 상관관계)

  • Lee, Deuk-Hee;Leem, Jae-Hyeon;Song, Yong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.101-102
    • /
    • 2009
  • We described the growth of undoped ZnO thin films and their optical properties changing with a various growth temperature. The un doped ZnO thin films were grown on c-$Al_2O_3$ substrates using pulsed laser deposition (PLD) at room temperature, 200, 400, and $600^{\circ}C$, respectively. Field emission microscopy (FE-SEM) measurements showed that the grain size of undoped ZnO thin films are increasing as a increase of growth temperature. In addition, we were investigated that the structural and optical properties of undoped ZnO thin films by x-ray diffraction (XRD) and photoluminescence (PL) studied. Also, we could confirmed that the exciton luminescence was strongly related to charge trap by grain boundary of the samples using micro-PL measurement.

  • PDF

Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향)

  • Son, Seung-Ik;Lee, Sang Woon;Son, Chang Sik;Hwang, Donghyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

The effect of annealing conditions on the structural and optical properties of undoped ZnO thin films prepared by RF Magnetron sputtering (어닐링 조건이 RF Magnetron sputtering을 이용하여 증착된 undoped ZnO 박막의 결정 및 광학특성에 미치는 영향)

  • Park, Hyeong-Sik;Yu, Jeong-Yeol;Yun, Eui-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.423-423
    • /
    • 2007
  • In this study, the effects of annealing conditions on the structural and optical properties of ZnO films were investigated. ZnO oxide (ZnO) films were deposited onto $SiO_2$/Si substrates by RF magnetron sputtering from a ZnO target. The substrate was not heated during deposition. ZnO films were annealed in temperature ranges of $500{\sim}650^{\circ}C$ in the $O_2$ flow for 5 ~ 20 min. The film average thicknesses were in the range of 291 nm. The surface morphologies and structures of the samples were characterized by SEM and XRD, respectively. The optical properties were evaluated by PL measurement at room temperature using a He-Cd 325 nm laser. According to the results, the optimal annealing conditions for the best photoluminescence (PL) characteristics were found to be oxygen fraction, ($O_2/O_2+Ar$) of 20%, RF power of 240W, substrate temperature of RT (room temperature), annealing condition of $600^{\circ}C$ for 20 min, and sputtering pressure of 20 mTorr. The obtained wavelength of light emission was found at 379 nm (ultraviolet-UV region). However, the optimal parameters for the best PL characteristics of ZnO thin films were not consistent with those obtained from the (002) intensities of XRD analyses. As a result, XRD pattern was not considered as the key issue concerning the intensity of PL of ZnO thin film. The intensity of the emitted UV light will correspond to the grain size of ZnO film.

  • PDF

Optimization of process parameters for improvement of electrical properties of ITiO film (ITiO박막의 전기적 특성 향상을 위한 공정변수의 최적화)

  • Choi, Woo-Jin;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1430-1431
    • /
    • 2011
  • To develope the transparent conducting oxide(TCO) films is one of the essential technologies to improve various properties of electro-optical devices such as dye-sensitized solar cells(DSCs). ITiO thin film is considered one of the candidates as TCO electrodes of DSCs because it shows many advantages such as the high transparency in long wavelength range above 700nm and excellent properties of electrical necking between nanoporous TiO2 and ITiO transparent electrode. This paper presents the effect of sputtering processes on the structural, electrical and optical properties of ITiO thin film deposited by r.f. magnetron sputtering. The effect of doping concentration of Ti on the chemical compounds and C axis-orientation properties of were mainly studied experimentally. The morphology and electrical properties were greatly influenced by deposition processes, especially by the doping concentration of Ti. The $3.8{\times}10^{-4}{\Omega}{\cdot}cm$ of minimum volume resistivity were obtained under the experimental conditions of gas pressure 7mTorr, substrate temperature $300^{\circ}C$, and 2.5% of Ti doping concentration.

  • PDF

Structural, Magnetic and Magneto-Optical Properties of Substituted Ba Ferrite Films Grown by RF Sputtering (스퍼터법으로 제조한 이온 치환 Ba 훼라이트 박막의 구조 및 자기적, 자기광학적 성질)

  • Cho, J.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 1992
  • Structural, magnetic and magneto-optical(1.0~3.2eV) properties of rare earth (Ce, Pr, Eu), transition metal(Ni, Co), and Al substituted polycrystalline Ba ferrite films grown by rf sputtering have been investigated. TEM studies revealed that crystal grains in the films were reduced in size from several hundred nm to the order of 1 nm with the decrease of rf power density during sputtering. By substituting Al, square hysteresis loops have successfully been obtained. It has been found that Niions strongly enhances Faraday rotation of the films in the visible range. It has been confirmed that Co ions also strongly enhances Faraday rotation of the films in the near infrared. En- hancement in Faraday rotation by Ce, Pr, and Eu ions has not been observed. The origin of the enhancement in magnetic and magneto-optical properties of the films is discussed.

  • PDF

COLLOIDAL PROPERTIES OF HOLLOW LATICES AND THEIR ROLES IN CONTROLLING COLORIMETRIC PARAMETERS OF COATED PAPER SURFACE

  • Hitomi HAMADA;Yoko SAITO
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.309-314
    • /
    • 1999
  • With a view to seek the influence of hollow sphere pigments of latex upon the printed color on coated paper surface, the hollow sphere pigments were compared with filled ones in a variety of experimental approaches. Colloidal properties of latices were determined by measuring zeta potential and particle size distribution. For the amphoteric filled sphere pigment of latex, the polarity was reversed from the negative side to the positive side with decreasing pH. An extraordinarily high peak in the particle size distribution of the amphoteric filled evidenced aggregation between latex particles near the isoelectric point, depending on the electrolyte concentration and pH of the suspending medium. Coated papers containing the hollow sphere pigment in their coating improved optical properties like gloss and brightness. Optical parameters solely of the coating could account for this finding. An equation derived from the Kubelka-Munk equation calculated them fro twice measurements of reflectance of a coated paper over two substrates of different reflectances. This method permitted to predict brightness of coated paper of which coat weight would be different fro the actual one. The colorimetric parameters of solid-printed surfaces of the coated papers closely related to optical and structural properties of the coated papers. The color of the printed surfaces was dominated by the brightness and the smoothness of the coated papers. The hollow sphere pigments were proved to improve optical properties of coated paper and to control minutely colorimetric parameters of printed surfaces.