• Title/Summary/Keyword: Optical and structural properties

Search Result 936, Processing Time 0.027 seconds

The Surface Image Properties of BST Thin Film by Depositing Conditions (코팅 조건에 따른 BST 박막의 표면 이미지 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Cheol;Ooh, Soo-Hong;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.107-110
    • /
    • 2002
  • The optical memory devices of BST thin films to composite $(Ba_{0.7}\;Sr_{0.3})TiO_{3}$ using sol-gel method were fabricated by changing of the depositing layer number on $Pt/Ti/SiO_{2}/Si$ substrate. The structural properties of optical memory devices to be ferroelectric was investigated by fractal analysis and 3-dimension image processing. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was $2500[\AA]$, $3500[\AA]$ and $3800[\AA]$. BST thin films exhibited the most pronounced grain growth. The surface morphology image was roughness with coating numbers. The thin films increasing with coating numbers shows a more textured and complex configuration.

  • PDF

Structure, Optical and Electrical Properties of AI-doped ZnO Thin Film Grown in Hydrogen-Incorporated Sputtering Gas

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi;Munir, Badrul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.154-159
    • /
    • 2005
  • Low RF power density was used for preparing transparent conducting AI-doped ZnO (AZO) thin films by RF Magnetron Sputtering on Corning 1737 glass. The dependence of films' structural, optical and electrical properties on sputtering gas, film's thickness and substrate temperature were investigated. Low percent of incorporated H2 in Ar sputtering gas has proven to reduce film's resistivity and sheet resistance as low as $4.1\times10^{-3}{\Omega}.cm$. It also formed new preferred peaks orientation of (101) and (100) which indicated that the c-axis of AZO films was parallel to the substrate. From UN-VIS-NIR Spectrophotometer analysis, it further showed high optical transmittance at about $\~ 90\%$ at visible light spectra (400-700nm).

  • PDF

Lyotropic Chromonic Liquid Crystals in Aligned Films for Applications as Polarizing Coatings

  • Schneider, Tod;Golovin, Andrii;Lee, Jong-Chan;Lavrentovich, Oleg D.
    • Journal of Information Display
    • /
    • v.5 no.2
    • /
    • pp.27-38
    • /
    • 2004
  • We describe dried oriented films with anisotropic structural and optical properties prepared from the aqueous solutions of plank-like molecules, the so-called Lyotropic Chromonic Liquid Crystals (LCLCs). The dried LCLC films may be used as optical elements, such as polarizers, compensators, color filters, or retardation plates in the UV, visible, or infrared parts of spectrums. The optical quality of the films is determined by the uniformity of the molecular alignment, which often distorted by periodic variations of the director field. We describe different ways to improve the alignment properties of the films by using additives. We present compositions capable of polarizing effects in visible and UV parts of spectrum.

Properties of GST Thin Films for PRAM with Bottom Electrode (PRAM용 GST계 상변화 박막의 하부막에 따른 특성)

  • Jang, Nak-Won;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.205-206
    • /
    • 2005
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. Among the phase change materials, $Ge_2Sb_2Te_5$(GST) is very well known for its high optical contrast in the state of amorphous and crystalline. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the structural properties of GST thin films with bottom electrode were investigated for PRAM. The 100-nm thick GST films were deposited on TiN/Si and TiAlN/Si substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films, we performed x-ray diffraction (XRD) and atomic force microscopy (AFM).

  • PDF

Optical Properties of Ga2O3 Single Crystal by Floating Zone Method (부유대역법을 이용한 단결정Ga2O3의 광학적 특성)

  • Gim, JinGi;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.78-82
    • /
    • 2021
  • The Ga2O3 single crystal was grown through a floating zone method, and its structural and optical properties were instigated. It has a monoclinic crystal structure with a (100) crystal orientation and an optical band gap energy of 4.6 eV. It showed an average transmittance of 70% in the visible region. At room temperature, its photoluminescent spectrum showed three different peaks: the ultraviolet at 360 nm, the blue-green at 500 nm, and the red peaks at 700 nm. Especially, at liquid nitrogen temperature, the ultraviolet peak was optically active while the others were quenched.

The structural, optical and photocatalytic properties of $TiO_2$ thin films fabricated by do magnetron sputtering (직류 마그네트론 스퍼터링법으로 제조된 $TiO_2$ 박막의 구조적, 광학적 특성 및 광촉매 효과)

  • Lim, J.M.;Yang, H.H.;Kim, Y.J.;Park, J.Y.;Jeong, W.J.;Park, G.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.420-423
    • /
    • 2003
  • [ $TiO_2$ ] thin films were fabricated by DC magnetron sputtering system at by controlling deposition times, ratios of $Ar:O_2$ partial presser ratio and substrate conditions. And the surface, cross-section morphology, microstructure, and composition ratio of the films were analyzed by FE-SEM, TEM and XPS. Besides, the optical absorption and transmittance of the $TiO_2$ films were measured by a UV-VIS-NIR Spectrophotometer, and photocatalytic properties were studied by G C Analyzer & Data Analysis system. As the result, when $TiO_2$ thin film was made at deposition time of 120[min] and $Ar:O_2$ ratio of 60:40, the best structural and optical properties among many thin films could be accepted. The best results of properties were as follows: thickness; $360{\sim}370[nm]$, grain size; 40[m], gap between two peak binding energy, $5.8{\pm}0.05[eV]$ ($2p_{3/2}$ peak and $2p_{1/2}$ peak of Ti was show at $458.3{\pm}0.05[eV]$ and $464.1{\pm}0.05[eV]$ respectively), binding energy; $530{\pm}0.05\;[eV]$, opticalenergy band gap; 3.4[eV].

  • PDF

Annealing Effects on the Properties of Bi-doped ZnO Thin Film (Bi-doped ZnO 박막의 열처리에 따른 특성)

  • Shin, Johngeon;Hwang, Injoo;Cho, Shinho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • Annealing effects on the properties of Bi-doped ZnO thin films were investigated. Bi- doped ZnO thin films were deposited on quartzs substrates at 300℃ by using radio-frequency magnetron sputtering system. Post heat treatments at 600, 700, and 800℃ were performed to evaluate the effect of annealing temperatures on the structural, optical, and electrical properties of Bi-doped ZnO thin films. FE-SEM images showed the dramatic surface morphology changes by rearrangement of elements at high heat treatment temperature of 800℃. X-ray diffraction analysis indicated that the peaks of the Bi-doped ZnO thin films were same as the peaks of the (002) planes of ZnO peak-positioned at 2θ=34.0° and peak intensities and FWHMs were improved as the annealing temperatures increased. The optical transmittance was improved with increasing annealing temperatures and was over 80% in the wavelength region between 435 and 1100 nm at the annealing temperature of 700 and 800℃. With increasing annealing temperature, the electron concentrations and electron mobilities were increased. On the other hand, electric resistivity of the films were decreased with increasing annealing temperatures. These results showed that the heat treatment temperature is an important parameter to improve the structural, optical, and electrical properties of Bi-doped ZnO thin films.

스퍼터링 방법으로 성장시킨 나노구조의 Ga 농도 변화에 따른 형상 변화

  • Kim, Yeong-Lee;U, Chang-Ho;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.23.1-23.1
    • /
    • 2009
  • ZnO is of great interest for various technological applications ranging from optoelectronics to chemical sensors because of its superior emission, electronic, and chemical properties. In addition, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. To date, several approaches have been proposed for the growth of one-dimensional (1D) ZnO nanostructunres. Several groups have been reported the MOCVD growth of ZnO nanorods with no metal catalysts at $400^{\circ}C$, and fabricated a well-aligned ZnO nanorod array on a PLD prepared ZnO film by using a catalyst-free method. It has been suggested that the synthesis of ZnO nanowires using a template-less/surfactant-free aqueous method. However, despite being a well-established and cost-effective method of thin film deposition, the use of magnetrons puttering to grow ZnO nanorods has not been reported yet. Additionally,magnetron sputtering has the dvantage of producing highly oriented ZnO film sat a relatively low process temperature. Currently, more effort has been concentrated on the synthesis of 1D ZnO nanostructures doped with various metal elements (Al, In, Ga, etc.) to obtain nanostructures with high quality,improved emission properties, and high conductance in functional oxide semiconductors. Among these dopants, Ga-doped ZnO has demonstrated substantial advantages over Al-doped ZnO, including greater resistant to oxidation. Since the covalent bond length of Ga-O ($1.92\;{\AA}$) is nearly equal to that of Zn-O ($1.97\;{\AA}$), high electron mobility and low electrical resistivity are also expected in the Ga-doped ZnO. In this article, we report the successful growth of Ga-doped ZnO nanorods on c-Sapphire substrate without metal catalysts by magnetrons puttering and our investigations of their structural, optical, and field emission properties.

  • PDF

Development of Automotive Structural Part Considering the Formability of Sandwich Panel (샌드위치 판재의 성형성을 고려한 차체 부품의 개발)

  • Choi, Won-Ho;Choi, Bo-Sung;Lee, Dug-Young;Hwang, Woo-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.33-38
    • /
    • 2012
  • Sandwich composite panel with high strength steel face can reduce the weight of the automotive structural parts. Unlike the parts in aerospace application, the automotive parts are made by the forming process for mass production. The CAE simulation can predict the failures caused by forces and deformation during the forming process. Since the material properties are very important factor for the simulation, we performed the tensile test to get the material properties. The inspections by the optical microscope at each strain level show the states of the polymer resin. The material properties measured by the tensile tests are used for the input data of simulation. The simulation predicts the forming process of the bumper back beam very exactly compared with the try out results.

Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition (Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성)

  • An, Ha-Rim;Baek, Seong-Ho;Park, Il-Kyu;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.