• Title/Summary/Keyword: Optical and electrical properties

Search Result 2,227, Processing Time 0.029 seconds

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.164-168
    • /
    • 2011
  • Nanocrystalline cadmium sulphide (CdS) thin films were prepared using chemical bath deposition (CBD), and the structural, optical and photoconductive properties were investigated. The crystal structure of CdS thin film was studied by X-ray diffraction. The crystallite size, dislocation density and lattice constant of CBD CdS thin films were investigated. The dislocation density of CdS thin films initially decreases with increasing film thickness, and it is nearly constant over the thickness of 2,500 ${\AA}$. The dislocation density decreases with increasing the crystallite size. The Urbach energies of CdS thin films are obtained by fitting the optical absorption coefficient. The optical band gap of CdS thin films increases and finally saturates with increasing the lattice constant. The Urbach energy and optical band gap of the 2,900 A-thick CdS thin film prepared for 60 minutes are 0.24 eV and 2.83 eV, respectively. The activation energies of the 2,900 ${\AA}$-thick CdS thin film at low and high temperature regions were 14 meV and 31 meV, respectively. It is considered that these activation energies correspond to donor levels associated with shallow traps or surface states of CdS thin film. Also, the value of ${\gamma}$ was obtained from the light transfer characteristic of CdS thin film. The value of ${\gamma}$ for the 2,900 A-thick CdS thin film was 1 at 10 V, and it saturates with increasing the applied voltage.

Optical and structural properties of metal-dielectric near-infrared cutoff filters for plasma display panel application

  • Lee, Jang-Hoon;Lee, Kwang-Su;Hwangbo, Chang-Kwon
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.88-91
    • /
    • 2003
  • Electromagnetic interference shielding and near-infrared cutoff filters for plasma display panel application were designed and fabricated by radio frequency magnetron sputtering. Three types of the filters were prepared: the basic structure of type A consisted of [$TiO_2$ Ti Ag $TiO_2$]; type B, of [$TiO_2$ ITO Ag $TiO_2$]; type C, of [$TiO_2$ ITO Ag ITO $TiO_2$]. Ti and ITO layers deposited on Ag layers were employed as barriers to prevent the oxidation and the diffusion of Ag film into the adjacent oxide layers. Optical, electrical, chemical, and structural properties were investigated, and the result shows that the filters with the ITO barrier layers provided an enhancement in transmittance in the visible owing to a lower absorption of ITO layers than Ti layers. Type C filter showed better optical and electrical performances and smoother surface roughness than Type B and C filters: the average sheet resistance was as low as 1.51 $\Omega\Box$ (where $\square$ stands for a square film), the peak transmittance in the visible was as high as 78.2 %, and the average surface roughness was 1.48 nm.

An Antireflection and Antistatic Coatings for CRTs using PEDOT (PEDOT를 이용한 CRT용 반사방지 및 대전방지 코팅)

  • 김태영;김종은;이보현;서광석;김진열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A method for designing antireflection (AR) and antistatic (AS) coating layer by the use of conducting polymer as an electrically conductive transparent layer is proposed. The conducting AR coating is composed of four-layer with alternating high and low refractive index layer: silicon dioxide (n=1.44) and titanium dioxide (n=2.02) prepared at low temperature by sol-gel method are used as the low and high refractive index layer, respectively. The poly(3,4-ethylenedioxythiophene) which has the surface resistivity of 10$^4$Ω/$\square$ is used as a conductive layer. Optical constant of each ARAS coating layers such as refractive index and optical thickness were measured by 7he spectroscopic ellipsometer and from the measured optical constants the spectral properties such as reflectance and transmittance were simulated in the risible region. The reflectance of ARAS films on glass substrate was below 1 %R and the transmittance was higher than 95 % in the visible wavelength (400-700 nm). The measured AR spectral properties was very similar to its simulated results.

Electromagnetic Simulation of Ring-shaped Electrodeless fluorescent Lamps and its Electrical and Optical Characteristics (환형 무전극 형광램프의 전자계 시뮬레이션, 전기적 및 광학적 특성)

  • 최용성;조주웅;이영환;김광수;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.552-559
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The ring-shaped electrodeless lamp is intended as a high efficiency replacement for the incandescent reflector lamp in many applications. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, maxwell 3D finite element analysis program(Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 KHz and some specific conditions. The optical characteristics were measured luminance and a temperature and an optical spectrum distribution for 10 min in a one minute interval at the same time. With a goal of finding alternative materials, we show measurement results of electrical characteristics of a ring-shaped electrodeless fluorescent lamp as a function of frequency and the number of coil turns using a highly permeable($\mu$$_{r}$(equation omitted) 2,000) Mn-Zn ferrite. These results are compared with those of conventional ring-shaped electrodeless fluorescent lamp. It is found that the resistance, inductance and impedance are increased while the quality factor decreases as frequency increases.s.

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.

Study of the optical switching properties in waveguide type Au/$SiO_2$ nanocomposite film using prism coupler (프리즘 커플러를 이용한 도파로형 Au/$SiO_2$ 나노 혼합박막의 광 스위칭 특성 연구)

  • Cho, Sung-Hun;Lee, Soon-Il;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.76-76
    • /
    • 2008
  • The resonance properties due to the surface plasmon(SP) excitation of metal nanoparticles make the nanocomposite films promising for various applications such as optical switching devices. In spite of the well-known ultra-sensitive operation of optical switches based on a guided wave, the application of nanocomposite film(NC) has inherent limitation originating from the excessive optical loss related with the surface plasmon resonance(SPR). In this study, we addressed this problem and present the experimental and theoretical analysis on the pump-probe optical switching in prism-coupled Au(1 vol.%):$SiO_2$ nanocomposite waveguide film. The guided mode was successfully generated using a near infrared probe beam of 1550 nm and modulated with an external pump beam of 532 nm close to the SPR wavelength. We extend our approach to ultra-fast operation using a pulsed laser with 5 ns pulse width. To improve the switching speed through the reduction in thermal loading effect accompanied by the resonant absorption of pump beam light, we adopted a metallic film as a coupling layer instead of low-index dielectric layer between the high-index SF10 prism and NC slab waveguide. We observed great enhancement in switching speed for the case of using metallic coupling layer, and founded a distinct difference in origin of optical nonlinearities induced during switching operation using cw and ns laser.

  • PDF

Electrical and optical properties of AZO films sputtered in $Ar:H_2$ gas RF magnetron sputtering system

  • Hwang, Seung-Taek;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.192-192
    • /
    • 2009
  • AZO films were prepared by $Ar:H_2$ gas RF magnetron sputtering system with a AZO (2wt% $Al_2O_3$) ceramic target at a low temperature of $100^{\circ}C$. To investigate the influence of $H_2$ flow ratio on the properties of AZO films, $H_2$ flow ratio was changed from 0.5% to 2%. As a result, the AZO films deposited with 1% $H_2$ addition showed electrical properties with a resistivity of $5.06{\times}10^{-3}{\Omega}cm$. The spectrophotometer-measurements showed the transmittance of 86.5% was obtained by the film deposited with $H_2$ flow ratio of 1% in the range of 940nm for GaAs/GaAlAs LED.

  • PDF

The Effect of Different Substrate Temperature on the Electrical Properties of Al-doped ZnO Thin Films (Al-doped ZnO 박막의 기판 온도에 따른 전기적, 광학적 특성)

  • Kim, Bong-Seok;Kim, Eung-Kwon;Lee, Kyu-Il;Oh, Su-Young;Song, Joon-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1782-1785
    • /
    • 2007
  • In this paper, the effect of substrate temperature on structural, electrical and optical properties of aluminium-doped zinc oxide (AZO) films were investigated. AZO thin films were prepared on glass substrate by pulsed DC magnetron sputtering technique. The properties of AZO were measured by using XRD, AFM, UV spectrophotometer, and hall effect measurement system. The resistivity of AZO films was improved under the condition of high substrate temperature. The resistivity decreased from $9.95{\times}10^{-2}\;{\Omega}-cm\;to\;1.1{\times}10^{-3}\;{\Omega}-cm$ as a result of high substrate temperature and the average transmittances in visible range were above 80%.

Fabrication and Characterization of PLC-based Mach-Zehnder Interferometer Sensor (PLC-기반의 마흐-젠더 간섭계 센서 제작 및 특성 평가)

  • Kim, Jun-Hyong;Yang, Hoe-Yong;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.390-390
    • /
    • 2008
  • In this paper, we have designed and fabricated optical waveguides based on the Mach-Zehnder Interferometer (MZI) for application to sensor. The evanecent-wave sensor based on the MZI principle has sufficiently high sensitivity to measure the change of the refractive index on surface of a waveguide. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The fabrication of MZI optical waveguides was performed by a conventional Planar Lightwave Circuit (PLC) fabrication process. The fabricated MZI optical waveguide device was measured. According to the measurement result, the insertion loss of MZI optical waveguide device was below 3.5 dB and the polarization dependent loss (PDL) was within 0.1dB. In addition, we analyzed optical properties of MZI sensor according to the refractive index change of the sensor arm.

  • PDF